

Software Process
Modeling

INTERNATIONAL SERIES IN
SOFTWARE ENGINEERING

Series Editor:
Victor R. Basili

University of Maryland
College Park MD 20742

basili@cs.umd.edu

Also in the Series:
PROCESS IMPROVEMENT IN PRACTICE: A Handbook for IT Companies by Tore
Dyba, Torgeir Dings0yr and Nils Brede Moe ISBN: 1-4020-7869-2
IDENTIFYING RELEVANT INFORMATION FOR TESTING TECHNIQUE
SELECTION by Sira Vegas, Sira Vegas, Victor Basili; ISBN: 1-4020-7435-2
MULTIMEDIA SOFTWARE ENGINEERING by Shi-Kuo Chang; ISBN 0-7923-7736-2
EXPERIMENTATION IN SOFTWARE ENGINEERING: AN INTRODUCTION by Claes
Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjorn Regnell, Anders
Wesslen; ISBN: 0-7923-8682-5
NON-FUNCTIONAL REQUIREMENTS IN SOFTWARE ENGINEERING by Lawrence
Chung, Brian A. Nixon, Eric Yu and John Mylopoulos; ISBN: 0-7923-8666-3
SOFTWARE DEFECT MODELING by Kai-Yuan Cai; ISBN: 0-7923-8259-5
CONSTRAINT-BASED DESIGN RECOVERY FOR SOFTWARE REENGINEERING:
Theory and Experiments by Steven G. Woods, Alexander E. Quilici and Qiang Yang;
ISBN: 0-7923-8067-3
TOOLS AND ENVIRONMENTS FOR PARALLEL AND DISTRIBUTED SYSTEMS by
Amr Zaky and Ted Lewis; ISBN: 0-7923-9675-8
FORMAL SPECIFICATION TECHNIQUES FOR ENGINEERING MODULAR C
PROGRAMS by TAN Yang Meng; ISBN: 0-7923-9653-7

International Series in Software Engineering addresses the following goals:
• To coherendy and consistendy present important research topics and their

application(s).
• To present evolved concepts in one place as a coherent whole, updating early

versions of the ideas and notations.
• To provide publicadons which will be used as the ultimate reference on the

topic by experts in the area.

With the dynamic growth evident in this field and the need to communicate findings, this
series provides a forum for information targeted toward Software Engineers.

Software Process
Modeling

edited by

Silvia T. Acuna
Universidad Autonoma de Madrid

Spain

and

Natalia Juristo
Universidad Politecnica de Madrid

Spain

Springer

Dr. Silvia T. Acuna Dr. Natalia Juristo
Universidad Autonoma de Madrid Facultad de Informatica
Escuela Politecnica Superior Universidad Politecnica de Madrid
Ingenieria Informatica Fac. Informatica Campus de Montegancedo
28049 MADRID Boadilla del Monte,28660
SPAIN 28660 MADRID

SPAIN

Library of Congress Cataloging-in-Publication Data

A CLP. Catalogue record for this book is available
from the Library of Congress.

Software Process Modeling
edited by
Silvia T. Acuna, Universidad Autonoma de Madrid, Spain
and

Natalia Juristo, Universidad Politecnica de Madrid, Spain

International Series in Software Engineering Volume 10

ISBN 0-387-24261-9 e-ISBN 0-387-24262-7

Printed on acid-free paper.

© 2005 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or
in part without the written permission of the publisher (Springer
Science+Business Media, Inc., 233 Spring Street, New York, NY 10013,
USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and
retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now know or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and
similar terms, even if the are not identified as such, is not to be taken as
an expression of opinion as to whether or not they are subject to
proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 11053606,11374664

springeronline.com

Contents

Contributors IX

Software Process Modelling: A Preface
Silvia T. Acuha and Natalia Juristo

X l l l

Socio-Technical Interaction Networks in Free/Open
Source Software Development Processes 1
Walt Scacchi

1. Introduction
2. Understanding F/OSS Development Practices and

Processes
3. Limitations and Constraints of STINs on F/OSS

Development Processes
4. Conclusions

1

4

18
20

Open Source Software Development Process
Modeling
Jacques Lonchamp

1. Introduction
2. Open Source Projects
3. SPEM Meta Model Description
4. OSSDP Modeling
5. Discussion
6. Conclusion

29

29
31
33
36
56
60

Contents

3
Software Dependability Applications in Process
Modeling 65
Ray Madachy and Barry Boehm

1. Introduction 66
2. Background 67
3. Sample Applications 74
4. Summary and Conclusions 83

4
Simulation Process Modelling for Managing
Software Evolution 87
Meir M. Lehman, Goel Kahen and Juan F. Ramil

1. Introduction
2. Software Process Modelling Using System Dynamics
3. A Process Modelling Approach
4. A Behavioural Process Model Example
5. Further Work
6. Related Work
7. Final Remarks

88
89
91
92

103
104
104

Software Process Modelling

5
Software Process Modelling: Socio-Technical
Perspectives 111
Patrick Waterson, Stephan Weibelzahl and Dietmar Pfahl

1. Introduction 111
2. STS and the Software Process: Cots Selection and the

People Capability Maturity Model (P-CMM) 117
3. STS and the Software Process: Competency Programmes

and Process Simulation 123
4. STS and the Software Process: Future Issues for

Research and Practice 131
5. Summary and Conclusions 134

6
Motivation and Process Improvement 141
Watts S. Humphrey and Michael D. Konrad

1. Introduction 141
2. Organizational Objectives 142
3. Human Behavior 142
4. Interactions Among Groups 148
5. Improving Team Performance 150
6. Improving Organizational Performance 154
7. Conclusions 159

Contents

7
Managing Organizational Change for Software
Process Improvement 163
Deependra Moitra

1. Introduction 163
2. Software Process Improvement (SPI) 164
3. Brief Overview of the Literature 165
4. Problems and Challenges in Organizational Change for

SPI 167
5. Model for Managing Organizational Change for SPI 171
6. RoleofCultureinSPI 177
7. The Change Agent 179
8. Success Factors for Organizational Change for SPI 180

8
A Workshop-Oriented Approach for Defining
Electronic Process Guides. A Case Study 187
Torgeir Dingsoyr, Nils Brede Moe, Tore Dyba and
Reidar Conradi

1. Introduction 187
2. Method 191
3. Defining Processes in a Medium-Size Company 192
4. Discussion 200
5. Conclusion and Further Work 202

Index 207

Contributors

Barry Boehm

u s e Center for Software Engineering, Department of Computer Science,
University of Southern California, Los Angeles, CA 90098-0781, U.S.A.
E-mail: boehm@sunset.usc.edu

Reidar Conradi

Department of Computer and Information Science, Norwegian University of Science
and Technology, NO-7491 Trondheim, Norway.
E-mail: Reidar.Conradi@idi.ntnu.no

Torgeir Dingsoyr

SINTEF Information and Communication Technology, NO-7465 Trondheim, Norway.
E-mail: Torgeir.Dingsoyr@sintef.no

Tore Dyba

SINTEF Information and Communication Technology, NO-7465 Trondheim, NonA/ay.
E-mail: Tore.Dyba@sintef.no

Watts S. Humphrey

Software Engineering Institute, Carnegie Mellon University, 4500 Fifth Avenue,
Pittsburgh, PA 15213, U.S.A.
E-mail: watts@sei.cmu.edu

Goel Kahen

Crown Poly, Inc., 5700 Bickett St., Huntington Park, CA 90255, U.S.A.
E-mail: G_Cohen@crownpoly.com

Contributors

Michael D. Konrad

Software Engineering Institute, Carnegie Mellon University, 4500 Fifth Avenue,
Pittsburgh, PA 15213, U.S.A.
E-mail: mdk@sei.cmu.edu

Meir M. Lehman

School of Computing Science, Middlesex University, London, U.K.
E-mail: mml@mdx.ac.uk

Jacques Lonchamp

LORIA, Campus Scientifique, BP 254, 54500 Vandoeuvre-les-Nancy, France.
E-mail: jloncham@loria.fr

Ray Madachy

use Center for Software Engineering, Department of Computer Science,
University of Southern California, Los Angeles, CA 90098-0781, U.S.A.
E-mail: madachy@sunset.usc.edu

Nils Brede Moe

SINTEF Information and Communication Technology, NO-7465 Trondheim, NonA/ay.
E-mail: Nils.B.Moe@sintef.no

Deependra Moitra

Infosys Technologies Limited, Bangalore, India.
E-mail: deependra@moitra.com

Dietmar Pfahl

Fraunhofer Institute Experimental Software Engineering (lESE), SauenA/iesen 6,
D-67661 Kaiserslautern, Germany.
E-mail: pfahl@iese.fhg.de

Software Process Modelling

Juan F. Ramil

Computing Department, Faculty of Maths and Computing,
The Open University, Walton Hall, Milton Keynes MK7 7LW, U.K.
E-mail: j.f.ramil@open.ac.uk

Walt Scacchi

Institute for Software Research, Donald Bren School of Information and Computer
Science, University of California, Irvine, Irvine, CA 92697-3425, U.S.A.
E-mail: Wscacchi@uci.edu

Patrick Waterson

Fraunhofer Institute Experimental Software Engineering (lESE), SauenA/iesen 6,
D-67661 Kaiserslautern, Germany.
E-mail: waterson@iese.fhg.de

Stephan Weibelzahl

Fraunhofer Institute Experimental Software Engineering (lESE), SauenA/iesen 6,
D-67661 Kaiserslautern, Germany.
E-mail: weibel@iese.fhg.de

Silvia T. Acuna

Departamento de Ingenieria Informatica, Escuela Politecnica Superior, Universidad
Autonoma de Madrid, Avda. Francisco Tomas y Valiente 11,
28049 Madrid, Spain.
E-mail: silvia.acuna@ii.uam.es

Natalia Juristo

Facultad de Informatica, Universidad Politecnica de Madrid,
Campus de Montegancedo s/n, 28660 Boadilla del Monte,
Madrid, Spain.
E-mail: natalia@fi.upm.es

SOFTWARE PROCESS MODELLING:
A Preface

Silvia T. ACUNA^ and Natalia JURISTO^
^Departamento de Ingenieria Informdtica, Escuela Politecnica Superior, Universidad
Autonoma de Madrid, Avda. Francisco Tomds y Valiente 11, 28049 Madrid, Spain, ^Facultad
de Informdtica, Universidad Politecnica de Madrid, Campus de Montegancedo s/n, 28660
Boadilla del Monte, Madrid, Spain. E-mail: silvia.acuna@ii.uam.es; natalia@fi.upm.es

1. INTRODUCTION

Customers are placing growing demands on the software industry. They
are looking for more complex products that are, at the same time, easier to
use. Software developer organisations are expected to produce higher quality
products and get them to customers faster. In doing so, however, globally
distributed development teams have to cope with understaffmg and changing
technologies. The challenges for the software industry are apparently
mounting.

Over the years, a variety of software process models have been designed
to structure, describe and prescribe the software systems construction
process. Recently, software process modelling is increasingly dealing with
new challenges raised by the tests that the software industry has to stand. For
example, we have open source development processes that are inherently
more dynamic and have a major social component. There are also software
development processes that involve assembling off-the-shelf components,
where the incorporation of commercial off-the-shelf systems into software
processes is often ad hoc and their selection calls for an integral assessment
of technical capabilities and human and business issues.

This new context implies innovative modelling approaches and
modelling techniques for understanding and improving such processes.
These approaches should make provision for open, agile, distributed
development processes, where the people play a critical role. Therefore,

xiv Preface

these new contexts raise unprecedentedly complex challenges for existing
software process models that include a range of formalisms for describing or
prescribing processes in traditional environments.

This book brings together software process experts to discuss relevant
results in software process modelling and give their view of this field. This
edited book focuses on new aspects of software process modelling.
Specifically, it deals with socio-technological aspects, process modelling for
new development types (open source software, dependability applications,
etc.) and organisational change management.

In this preface, we first analyse the two main actions that can be taken
with respect to the software process: define or model, and evaluate and
improve. Then, as the eco-organisational dimension should be just as
formalised as the technological dimension in this new software development
context, we address the importance of relating social and technical systems
in the software process. Finally, we present the chapters that make up this
edited book.

2. SOFTWARE PROCESS RESEARCH

The general objective of software process research is to improve software
development practice by proposing: a) better ways of designing the
developer organisation processes, and b) better ways of improving this
organisation at the level of individual processes and the organisation as a
whole. To this end, there are two lines of software process research: software
process modelling, and software process evaluation and improvement.

2.1. Software Process Modelling

The software process is a set of activities undertaken to manage, develop
and maintain software systems. In other words, the software process focuses
on the construction tasks rather than on the output products. Software
process modelling describes the creation of software development process
models. Six chapters of the book deal with process modelling. Yet, even
today opinion is divided as to exactly what the term "software process"
means. Some reject this notion outright, banking on the premise that any task
can and will be eventually automated; others believe that engineering
processes are best modelled in detail with supporting environment; yet,
others tend to think of a process as an executable program whose purpose
cannot avoid employing the people's creativity. In their chapter, Dingsoyr,

Software Process Modelling xv

Moe, Dyba and Conradi suggest that complex and heavy-weight models are
not necessary.

There are different types of process modelling. Processes can be
modelled at different levels of abstraction (for example, standard models
versus tailored models) and they can also be modelled for different purposes
(descriptive models versus prescriptive models). Examples of well-known
standards are the traditional IEEE STD 1074-1997, ISO/IEC 12207-2002,
and the Unified Process. Note that various approaches to process modelling
differ primarily as to the understanding of a software process and the
original motivations for modelling.

A software process model is an abstract representation of the
architecture, design or definition of the software process. Each
representation describes, at different detail levels, an organisation of the
elements of a finished, ongoing or proposed process, and it provides a
definition of the process to be used either as roadmap or for evaluation and
improvement.

A process model can be analysed, validated and simulated, if executable.
The goal of process simulation is process prediction, which refers to
analysing the software process to predict its future behaviour. The chapter by
Madachy and Boehm, for example, simulates specific aspects of process
dependability that can be predicted, whereas Lehman, Kahen and Ramil
simulate the essential activities underlying the software processes to predict
process evolution by defining the process feedback loops.

Process models are used mainly to improve process understanding and
communication, as well as for software process control (evaluation and
improvement) in an organisation. In their respective chapters, Scacchi
describes open source software development processes (process analysis)
and Lonchamp models these processes (process synthesis). Both use
modelling to improve the understanding of this new development type.
Lonchamp also pursues process comparison, reuse, and improvement and
process enactment support in open source software development modelling.
On the other hand, Lehman, Kahen and Ramil aim for the process-modelling
goal of supporting process management to pinpoint and control various
influences on long-term behaviour. Madachy and Boehm also take up this
modelling goal to evaluate dependability strategies.

Each model observes, focuses on or gives priority to particular points of
such a complex world as software construction. A model is always an
abstraction of reality and, as such, represents a partial and simplified
description of reality, that is, a model does not account for all the parts or
aspects of the process. Generally, a process model can be divided into
several submodels expressing different viewpoints or perspectives. Both
Lonchamp and Lehman, Kahen and Ramil adhere to this approach and

xvi Preface

investigate the processes at a high level of abstraction to rule out complex
process models that are difficult to comprehend, validate, utilise or reuse.

Different elements of a process, for example, activities, products
(artefacts), resources (personnel and tools) and roles, can be modelled.
Traditionally, software process model representations have focused on three
elementary process features: the activity, the artefact and the agent (human
and computerised). However, other characteristics have been empirically
proven to have a big influence on the production process: human
competencies, human behaviour, human roles and the organisation of work
among human beings. Waterson, Weibelzahl and Pfahl suggest the need for
models to address organisational culture and focus on the behavioural
capabilities of the people and roles involved in the software process.

2.2. Software Process Evaluation and Improvement

Software process evaluation and improvement judges and decides on the
quality of the software process of a given organisation, and may propose a
process improvement strategy. The efforts of the scientific community in this
field have led to quite a number of maturity models and standards, such as
ISO 9001, CMMI (Capability Maturity Model Integration) developed by the
Software Engineering Institute (SEI) at Carnegie Mellon University,
ISO/IEC 15504 and Bootstrap. All these models have two goals: a) to
determine the aspects for improvement in a software development
organisation; and b) to reach an agreement on what a good process is. This
goal stems from the very nature of the evaluation process, as it is essential to
use a reference model or yardstick against which to compare the software
process of the organisation under evaluation. Therefore, it involves
modelling the above process by identifying what sorts of activities have to
be carried out by an organisation to assure the quality of the production
process and, ultimately, the end product.

Software process evaluation involves analysing the activities carried out
in an organisation to produce software. The ultimate goal of process
evaluation is to improve software production. Development process
evaluation and improvement works under the hypothesis that the quality of
the software product is determined by the quality of its development process.
This strategy is equivalent to the one implemented in other branches of
engineering and in other industries, where the quality of the resulting
product is increased by controlling the process used in its production.
Software process evaluation and improvement methods introduced
innovative concepts that changed the way in which software production
activities are perceived. There are two chapters in this book dealing with
process improvement.

Software Process Modelling xvii

Software process improvement examines how to improve an
organisation's software development practices, once software process
evaluation has made clear what the current state of the process is. Software
process improvement is not planned as a single step to excellence, but is
performed gradually by transitions from one maturity level to another. There
are several improvement models and solutions, like the SEI's IDEAL, the
Business Improvement Guides (BIGs) developed by the European Software
Institute (ESI) or the Process Improvement Guide (PIG) developed by the
ISO/IEC 15504 project.

A capable and mature software development organisation
institutionalises the improvement effort. In his chapter, Moitra suggests that
organisational change management should also be institutionalised for
successful software process improvement.

Other evaluation and improvement models focus on organisation and
human aspects. For example. People CMM characterises an organisation on
the basis of how it manages its workforce. Accordingly, each progressive
level of People CMM produces a transformation in the organisational culture
of a software organisation in order to improve the development,
organisation, motivation and retention of its workforce.

The Personal Software Process (PSP) takes a different approach, albeit
also directed at the human aspects of the process. The PSP focuses on
individual software engineers' performance. Filling the gap between the
CMMI (an organisation-centred approach) and the PSP (an individual-
centred approach), the Team Software Process (TSP) came to address the
software process improvement problem at the team level. In their chapter,
Humphrey and Konrad suggest that the CMMI and People CMM need to be
integrated with PSP and TSP to improve organisational performance. Thus,
Humphrey and Konrad claim that "the good practices instilled by both
CMMI and the People CMM are enhanced by the TSP and PSP, while the
PSP and TSP benefit from the integrated technical and people-management
environment provided by implementing CMMI and the People CMM".

These two areas (process modelling, and evaluation and improvement)
play a central role in software process research. Modelling and evaluation
and improvement are, however, closely related. Software development
process modelling is one of the key factors for improving software
productivity and quality. Modelling, which is the foundation for creating the
software process prior to any evaluation or control, that is, designing a good
process, is possibly the most critical factor for achieving a quality software
production process. The objective therefore is to model the process by
identifying what elements there should be at a software developer
organisation to assure the quality of the production process and, ultimately,

xviii Preface

the output product. Large-scale software developer organisations are trying
to mature their software development processes on the basis of more precise,
integral and formalised descriptions of well-established processes.

3. SOCIO-TECHNICAL ASPECTS OF THE
SOFTWARE PROCESS

The two lines of research discussed earlier (software process modelling,
and evaluation and improvement) are based on the hypothesis that the
process influences product quality. Although leading researchers have
suggested that the organisation and people influence software product
quality, it is not a subject that the community is researching in depth. For
example, back in the 1980s Boehm explicitly mentioned human relations as
a key component (alongside adequate resource and program engineering) for
achieving a successful software product and conducting a successful
software development and maintenance process in his book "Software
Engineering Economics". As regards the software process, he claimed that
"the human relations goals for the software development and maintenance
process have to do with the management of people's activities in a way
which satisfies the human needs and fulfils the human potential of the people
involved in the process". Additionally, in 1988, Curtis, Krasner and Iscoe
reached the conclusion that the "development of large software systems
should be dealt with, at least partly, as a process of learning, communication
and negotiation". However, few process models today discuss how to
organise and manage large development groups to maximise their
coordination. This is, nevertheless, just as important as managing the
software process.

Software development organisations need to understand that dealing with
software problems does not only involve the technical dimensions, like
introducing a new tool or selecting a method. The human dimension can be
considered even more important than the technical side and, as DeMarco and
Lister put it, "most software development projects fail because of failures
with the team running them".

The view of software development as a process carried out by teams of
people who have to be coordinated and managed within an effective
organisational structure helps to identify the different dimensions of software
development and the problems that need to be dealt with to establish
effective practices. The view is switching from the production and
technological dimension to the social and organisational dimension in the
understanding that dealing with the problems and questions of software
development is not confined to the technological dimension, such as, for

Software Process Modelling xix

example, the introduction of an effective environment or the selection of a
suitable life-cycle strategy. These questions are necessary but not sufficient.
The organisational dimension, that is, the discipline of organisational and
personal behaviour, should also be considered. Moreover, attention should
be paid to the complex interrelationship between several organisational,
cultural, technological and financial factors within the software development
process.

In their respective chapters, both Scacchi and Waterson, Weibelzahl and
Pfahl explicitly adopt the approach of analysing software process
relationships between social and technical systems and the need to jointly
improve and simultaneously design these systems. As we will see later,
Waterson, Weibelzahl and Pfahl describe the software process models
created using this approach and trace a roadmap of socio-techical systems in
the software process. Scacchi describes the evolution of the socio-technical
systems approach and characterises this approach for open source software
development processes.

Despite all the efforts and progress made in recent years, we are still
without:

• A conceptualisation and formalisation of the inclusion of people and
the interaction in which they participate and

• A systematic and disciplined process for including organisational
aspects in software process modelling.

4. BOOK CONTENT

This edited book deals with four aspects of software process modelling:
processes for open source software development (two chapters); behavioural
processes (two chapters); socio-technico-organisational processes (three
chapters); and software process analysis, definition and evaluation (one
chapter).

In the following, we briefly describe the content of each chapter.
Over the last few years, there has been growing and widespread interest

in understanding the processes of open source software development in both
scientific research and the software industry. Two chapters focus on this
special type of development. It is important to raise the understanding of the
development process in open source software projects. To date there has
been no prior model or globally accepted framework that defines how open
source software is developed in practice. Hence the importance of the
contributions of the following chapters.

XX Preface

The first chapter (Socio-Technical Interaction Networks in Free/Open
Source Software Development Processes, Scacchi) deals with the
heterogeneity of free/open source software development (F/OSSD)
approaches by investigating F/OSSD projects in different and diverse
software communities. The second chapter (Open Source Software
Development Process Modeling, Lonchamp) investigates the improvement
of the open source software process by making this more explicit through
process modelling aimed at taking advantage of a common process. Let us
look at the content of these two chapters in more detail.

The first chapter of this book aims to present a comprehensive
framework for analysing the F/OSSD, which differs in many, interesting
ways from traditional development processes. The author proposes socio-
technical interaction networks as a conceptual framework for comparatively
analysing patterns and networks of interactions among people, products, and
processes that are found in a growing base of empirical studies of F/OSSD
projects. In "Socio-Technical Interaction Networks in Free/Open Source
Software Development Processes", Scacchi proposes four, closely
interrelated F/OSSD processes:

a) participating, joining, and contributing, these activities are intra-,
inter- and cross-projects and teams;

b) forming alliances and building community through participation,
artefacts and tools;

c) projects cooperating, coordinating and controlling, using both
software version control tools and virtual project management tools
to mobilize, coordinate, control, build, and assure the quality of
free/open source software development activities; and

d) co-evolving socio-technical systems for free/open source software,
which allows the continued improvement both of the functionality
and quality of this type of software systems and of the people and
communities involved.

This chapter establishes that F/OSSD processes represent an alternative
community-intensive approach for developing software systems and related
artefacts, as well as social-cultural (sharing beliefs, values, etc.)
relationships. The chapter also presents the limitations and constraints of the
approach, considering the four above-mentioned process types. This chapter
provides an increased understanding of the development process in free/open
source software projects, including an attempt to analyse similarities in the
development processes of the range of free/open source software
approaches, processes and practices.

The second chapter of this book provides guidelines on how to model the
open source software (OSS) process and how to help non-OSS developers to
practice OSS, by documenting and facilitating the relevant OSS processes.

Software Process Modelling xxi

In "Open Source Software Development Process Modeling", Lonchamp
aims to help improve the OSS process by making these more explicit
through process modelling. For this purpose, he presents the Software
Process Engineering Meta-model (SPEM) from the Object Management
Group (OMG), which he applies to OSS process modelling. SPEM is a
complex meta-model of approximately 20 main classes and their relations
for defining software engineering process models and their components.
This is a three-layered model: definition level and generic level, which
specify the common features of all fully-fledged open source projects; and
specific level, which describes fine-grained process model fragments
characteristic of different open source projects. This application provides
new, systematised knowledge of how software is developed in open source
projects. This is a significant contribution to the open source research
community, again catering for the great variance in OSS approaches and
even the variance within concrete OSS projects, as well as for the patterns
that Scacchi provides in the earlier chapter for the four F/OSSD process
types.

Software process behaviour modelling and simulation has come to be a
powerful tool for software process improvement. A very comprehensive
representation for simulation are the systems dynamics-based models. The
model proposed by Abdel-Hamid was the first important application of
systems dynamics and of the feedback systems control laws to software
process modelling and simulation. Many other proposals have emerged since
then. A variety of simulation models have been designed to predict the
dynamic process behaviour. But there are few models for evaluating the
influence of processes on the attributes of critical applications and
optimising the software process. Two chapters deal with this important topic
in this book.

In chapter 3, "Software Dependability Applications in Process
Modeling", Madachy and Boehm deal with the problem of analysing all the
effects of combined strategies on achieving dependability that would be
useful for developers as they decide which dependability strategies they
should use in a given situation to achieve dependability attributes. This is not
an easy problem, since the set should not only reflect the superposition
between the opportunities of dependability strategies but also many
interpretations in different contexts. Modelling can help determine how
much is enough for different situations in order to find the most cost-
effective balance of activities. First, the authors present a comprehensive
framework for modelling dependability. This framework can be used to
model the relationships between the forms for achieving dependability and
the dependability attributes. The simulation model will be good for process
optimisation, which refers to analysing software process dependability

xxii Preface

attributes, such as attributes of protection, robustness and quality of service.
This analysis allows the selection of strategies for achieving dependability in
the development process of critical software systems. These strategies are for
defect prevention, finding and fixing defects or for reducing the impact of
defects. Additionally, the authors give an overview of analytical and
simulation process models that involve dependability in some fashion. They
focus on analysing the impact of reliability decisions on these models.
Finally, they describe an example that shows how process modelling can be
used to optimise a process for dependability.

In chapter 4, "Simulation Process Modelling for Managing Software
Evolution", Lehman, Kahen and Ramil describe a systems dynamics model
that can serve as a basis of a tool to support decision making regarding the
optimal personnel allocation over the systems lifetime. The model is
provided as an example of the use of process modelling in order to plan and
manage long-term software evolution. The central idea of this research is to
demonstrate how the presence of feedback loops in software processes
determines the evolution of most of today's computing systems. This model
represents the processes at a high level of abstraction and focuses on the
long-term issues of the software process. The authors have analysed a lot of
software processes from industry from this perspective for comparison and
to assist improvements in project planning and progress.

Software development is a conjunction of three worlds: the
organisational environment, the social environment and the technological
environment. The inclusion of these environments will make it possible to
output software process models that meet the specified organisational,
cultural and technological requirements, providing an exhaustive analysis of
the people in the software process, as well as a modelling process and
method, which is missing from the models now defined.

In chapter 5, "Software Process Modelling: Socio-Technical
Perspectives", Waterson, Weibelzahl and Pfahl report the existence of
process models that can all be related to the socio-technical systems (STS)
perspective: process simulation models, evaluation models, competency
models, maturity models, etc. These authors discuss the fact that STS may
include different points of view on process modelling, and there are
difficulties in comparing STS and software engineering approaches normally
associated with the software process. This chapter covers several important
topics of software process studies that have not had enough press in the
software engineering literature and particularly work on process models. The
final part of this chapter defines a roadmap for future socio-technical studies
of the software process.

The importance of people and people motivation in the adoption and use
of software processes is widely recognised by the software process scientific

Software Process Modelling xxiii

community. To date, work on this topic has largely focused on the
motivational and people-related issues of the software practitioners
themselves. Chapter 6 broadens this focus to examine the motivational issues
that govern behaviour of both the developers, their teams, their supported
teams, their management and the customers or users of the products
developed by the teams and to show how their behaviour can affect the
development work. In "Motivation and Process Improvement", Humphrey
and Konrad provide several guidelines that organisations may consider to
address these people issues and key problems for the software process
improvement. Several improvement frameworks such as the Capability
Maturity Model (CMM) Integration, People CMM, Personal Software
Process, and Team Software Process are characterised to analyse the points
and to discuss the benefits that can be achieved by addressing the
motivational and behavioural issues at all organisational, engineering and
management levels.

In chapter 7, "Managing Organizational Change for Software Process
Improvement", Moitra gives an overview of relevant factors that influence
the software process improvement process. Although there are several
improvement models and solutions, Moitra points out that "the instances of
software organisations truly achieving success in their software process
improvement efforts are still small in number" and "these efforts mostly fail
owing to human issues that have an impact on the organisational change
process". Additionally, he presents a model and provides recommendations
for managing organisational change for software process improvement.

To round up this book, we have selected a chapter on process definition,
that does not follow in the tradition of the classical models and defends the
need for lightweight, participatory and comprehensive models.

Chapter 8 considers processes as a set of systematic guidelines arranged
in a electronic form. In "A Workshop-Oriented Approach for Defining
Electronic Process Guides. A Case Study", Dings0yr, Moe, Dyba and
Conradi describe a workshop-based approach for capturing an existing
process using a case study as an example. The approach produces an
electronic representation of the process activities that can be used for
analysis or communication of the process. The authors discuss the strengths
and weaknesses of applying such an approach.

Altogether, the eight chapters not only provide a comprehensive view of
the current status of research in software process modelling, but also shed
light on the challenges that future research will meet. We hope that readers
will therefore find plenty of inspiration from reading this book.

xxiv Preface

ACKNOWLEDGEMENTS

We wish to thank all the authors of the submitted chapters, whose
research has made this edited book possible, for sharing the product of their
work with other people and getting involved in other people's problems. We
are also deeply indebted to Angelica de Antonio Jimenez, Reidar Conradi,
Torgeir Dings0yr, Rachel Elliott, Xavier Franch, Jacques Lonchamp, Marta
Lopez Fernandez, Ray Madachy, Rodion M. Podorozhny, Isabel Ramos
Roldan, Mercedes Ruiz, Patrick Waterson and Stephan Weibelzahl for
helping us to improve the chapters of this book.

Madrid, SPAIN
September 2004

Chapter 1

SOCIO-TECHNICAL INTERACTION
NETWORKS IN FREE/OPEN SOURCE
SOFTWARE DEVELOPMENT PROCESSES

Walt SCACCHI
Institute for Software Research, School of Information and Computer Science,
University of California, Irvine, Irvine, CA 92697-3425 U.S.A. E-mail: Wscacchi@uci.edu

1. INTRODUCTION

This chapter explores patterns of social and technological interaction that
emerge in free/open source software development (F/OSSD) projects found
in different research and development communities. F/OSSD is a relatively
new way for building and deploying large software systems on a global
basis, and differs in many interesting ways from the principles and practices
traditionally advocated for software engineering. Hundreds of F/OSS
systems are now in use by thousands to millions of end-users, and some of
these F/OSS systems entail hundreds-of-thousands to millions of lines of
source code. So what's going on here, and how are F/OSSD processes that
are being used to build and sustain these projects different?

One of the more significant features of F/OSSD is the formation and
enactment of complex software development processes performed by loosely
coordinated software developers and contributors. These people may
volunteer their time and skill to such effort, and may only work at their
personal discretion rather than as assigned and scheduled. Further, these
developers generally provide their own computing resources, and bring their
own software development tools with them. Similarly, F/OSS developers
work on software projects that do not typically have a corporate owner or
management staff to organize, direct, monitor, and improve the software
development processes being put into practice on such projects. But how are
successful F/OSSD projects and software development processes possible

2 Socio-Technical Interaction Networks in Free/Open Source Software Development Processes

without regularly employed and scheduled software development staff, or
without an explicit regime for software engineering project management?
Why will software developers participate in F/OSSD projects? Why and how
are large F/OSSD projects sustained? How are large F/OSSD projects
coordinated, controlled or managed without a traditional project
management team? Why and how might these answers to these questions
change over time? These are the core research questions that will be
addressed in this chapter.

Socio-technical interaction networks (STINs) are an emerging conceptual
framework for identifying, organizing, and comparatively analyzing patterns
of social interaction, system development, and the configuration of
components that constitute an information system. More specifically, a STIN
denotes a set of collective relationships among:

"...people (including organizations), equipment, data, diverse
resources (money, skill, status), documents and messages, legal
arrangements and enforcement mechanisms, and resource flows.
The elements of a STIN are heterogeneous. The network
relationships between these elements include social, economic, and
political interactions." [Kling 2003].

Subsequently, STINs provide a scheme for examining the networks of
people who work together through interrelated social and technical processes
that arise to create the complex information systems and products. STINs
thus serve as a conceptual framework through which to examine ongoing
F/OSSD projects and processes.

STINs may be seen as the conceptual outgrowth of what historically was
called "socio-technical systems" (STS) [Emery 1960], informed by "actor
network theory". An STS perspective envisions a world of complex
organizations that routinely employ technicians/engineers to develop
systems for users, where success in developing a system depends on the
participation and sustained involvement of the system's users. If people
issues in the design, deployment, and evolution of these STS are slighted or
ignored, then these systems would be problematic or unsatisfactory to use,
else be outright failures. However, understanding this pathology, or
intervening to prevent it, is possible through STS practices that can be
incorporated into system development processes [Scacchi 2004c].
Historically, STS design approaches prescriptively advocated user
involvement and participation in the design and deployment of information
systems, and its successors like "participatory design" [Schuler 1993]
advocate more up-to-date renditions of STS design. Consequently, STS
design was among the earliest approaches to system development that sought

Software Process Modelling 3

to both engage and balance the interests of people (developers, end-users),
products (systems, documentation, etc.) and processes (system design and
usage) in a manner that focused on participation and involvement of all
system stakeholders. Other directions for advancing STS design include its
integration with workplace democracy movements [Bjerknes 1995, Ehn
1987] and soft systems approaches [Atkinson 2000], as well as its
reconstitution as a customer-driven system design method [Beyer 1997].

Actor-network theory (ANT) [cf Gallon 1986, Latour 1987, Law 1999]
on the other hand draws attention to processes by which scientific disputes
or technical design alternative become closed and rationalized, ideas
accepted, tools and methods adopted, or more simply how decisions are
made about what is known. ANT does not assume or encourage prescriptive
strategies or motives for why people should participate or be involved in
system design. Instead, it draws attention to need for empirical study of what
people do in their work, and what tools, resources, and artifacts they
produce, use, or consume along the way. Furthermore, ANT draws attention
to the relationships that repeatedly emerge in the ways people in different
roles and with different resources in overlapping settings articulate scientific
research or system development processes through situated work practices.

STINs build on concepts from STS design and ANT by drawing attention
to the web of relationships that interlink what people do in the course of their
system development work to the resources they engage and to the products
(software components, development artifacts, and documents) they create,
manipulate, and sustain. STINs thus give us a way to better observe the
contexts in which people carry out software development processes and
related work practices. In F/OSSD projects, this web is manifest and
articulated over the World-Wide Web and associated systems for creating
and updating the web, so that it can be observed, navigated, and empirically
studied. Introducing and explaining how STINs appear in different F/OSSD
projects, is therefore part of the purpose of this chapter. In turn, STINs are
then used as a framework to observe and focus on why and how software
developers participate in F/OSSD projects, what sustains their interest and
communities, how participation and community gives rise to socio-technical
conditions that serve to coordinate and control F/OSSD processes and
practices, and how and why they evolve over time.

This chapter seeks to explore and develop answers to questions about
F/OSSD by examining the patterns and networks of interactions among the
people, products, and processes that are found in a growing base of empirical
studies of F/OSSD projects. Exhibits from a variety of different F/OSSD
projects will be presented and used to empirically ground the analysis and
findings to be presented in this chapter.

4 Socio-Technical Interaction Networks in Free/Open Source Software Development Processes

2. UNDERSTANDING F/OSS DEVELOPMENT
PRACTICES AND PROCESSES

There is growing and widespread interest in understanding the practices
and processes of F/OSS development. However, there is no prior model or
globally accepted framework that defines how F/OSS is developed in
practice [Mockus 2002, Scacchi 2002, 2004]. The starting point is thus to
investigate F/OSS practices in different communities.

F/OSSD projects are being empirically studied in at least six different
and diverse F/OSS communities. These six are centered about the
development of software for Internet/Web infrastructure, computer games,
electronic business/commerce applications, academic support software,
software engineering design systems, and X-ray/deep space astronomy.

Rather than examine F/OSSD practices for a single system (e.g., Linux
kernel) which may be interesting but unrepresentative of most F/OSSD
projects, or of related systems from the just one community (e.g., Internet
infrastructure), the focus here is to identify general F/OSS practices shaped
by STINs both within and across these diverse communities. Thus, the
F/OSS development practices that are described below have been
empirically observed in different projects in each of these communities.
Further, data exhibits in the form of screenshots displaying Web site
contents from projects across the different F/OSS project communities are
used to exemplify the practices, though comparable data from a different
selection of F/OSS projects could serve equally well.

From studies to date, there are at least four areas where the formation and
activity of STINs is most apparent across F/OSSD projects within and across
all six communities. These include (a) participating, joining, and
contributing to F/OSS projects; (b) forming alliances and building
communities of practice through linked artifacts; (c) coordinating,
cooperating, and controlling F/OSSD projects; and (d) co-evolving social
and technical systems for F/OSS. Each can be briefly described in turn,
though none should be construed as being independent or more important
than the others. Furthermore, it appears that each can occur concurrent to
one another, rather than as strictly ordered within a traditional life cycle
model, or partially ordered in a spiral model.

2.1 Participating, joining, and contributing in F/OSS
projects

There are complex motivations for why F/OSS developers are willing to
allocate their time, skill, and effort by joining a F/OSS project [Hars 2002,

Software Process Modelling 5

Hertel 2003, von Krogh 2003]. Sometimes they may simply see their effort
as something that is fun, personally rewarding, or provides a venue where
they can exercise and improve their technical competence in a manner that
may not be possible within their current job or line of work. However,
people who participate, contribute, and join F/OSS projects tend to act in
ways where building trust and reputation [Stewart 2001], achieving "geek
fame" [Pavlicek 2000], being creative [Fischer 2001], as well as giving and
being generous with one's time, expertise, and source code [Bergquist 2001]
are valued traits. In the case of F/OSS for software engineering design
systems, participating in such a project is a viable way to maintain or
improve software development skills, as indicated in Exhibit 1.

-iDlxj
Edit Itiew S.0 Bookmarks lools ffiindow Help

Reload

Advanced search

Mii
How do I...

•Get help?

Category

scm

issuetrack

requirements

design

tech CO mm

construction

test ing

deployment

process

libraries

profession

students

TJgris-orsi Npy?^letJer

Featured
projects

Subversion,
RapidSVN,
TortolseSVN

Scarab

xmlbasedsrs

ArgoUML

eyebrov*fse,
binarycloud

phpcreate,

Iptools

maxq, aut

current

ReadySET

GEF, Axion,

Get the latest new^s and
feature articles.
• Newsletter info
• Mar 2004 issue

• Tigris.org is a mid-sized open source community focused on
building better tools for collaborative software development.

• You will not find thousands of unrelated projects here: every
project fits into the Tigris mission.

• You will not find dead projects here: every project is welcomed
into the community with a commitment to see it through and
active developers cycle among related projects.

• Tigris.org is hosted by CollabNet, but the Tigris mission is one
for the entire open source movement and one that has
attracted senior open source developers from many
organizations.

Tigris.org provides information resources for software engineering
professionals and students, and a home for open source software
engineering tool projects. We also promote software engineering
education and host some undergraduate senior projects.

Software engineering practices are key to any large development
project. Unfortunately, software engineering tools and methods are
not widely used today. Even after over 30 years as a engineering
profession, most software developers still use few software
engineering tools. Some of the reasons are that tools are
expensive and hard to learn and use, also many developers have
never seen software engineering tools used effectively,

The open source software development movement has produced a
number of very powerful and useful software development tools,
but it has also evolved a software development process that works
well under conditions where normal development processes fail.
The software engineering field can learn much from the way that
successful open source projects gather requirements, make design
decisions, achieve quality, and support users. Open source projects
are also a great for developers to keep their skills current and plug
into a growing base of shared experience for everyone in the field.

Invitation to contributors Start your project in tliis fertile valley •rjl

Exhibit 1: An example near the bottom highlighting career/skill development
opportunities arising from participation in F/OSS projects

(source: http://www.tigris.org/, March 2004)

6 Socio-Technical Interaction Networks in Free/Open Source Software Development Processes

Becoming a central node in a social network of software developers that
interconnects multiple F/OSS projects is also a way to accumulate social
capital and recognition from peers. One survey reports that 60% or more
F/OSS developers participate in two or more projects, and on the order of
5% participate in 10 or more F/OSS projects [Hars 2002]. In addition,
participation in F/OSS projects as a core developer can realize financial
rewards in terms of higher salaries for conventional software development
jobs [Hann 2002, Lerner 2002]. However, it also enables the merger of
independent F/OSS systems into larger composite ones that gain the critical
mass of core developers to grow more substantially and attract ever larger
user-developer communities [Madey 2004, Scacchi 2004c].

People who participate in F/OSS projects do so within one or more roles.
Gacek and Arief [Gacek 2004] provide a common classification of the
hierarchy of roles that people take and common tasks they perform when
participating in a F/OSS project, as shown in Figure 1. Typically, it appears
that people join a project and specialize in a role (or multiple roles) they find
personally comfortable and intrinsically motivating [von Krogh 2004]. In
contrast to traditional software development projects, there is no explicit
assignment of developers to roles, though individual F/OSSD projects often
post guidelines or "help wanted here" for what roles for potential
contributors are in greatest need.

Users

„ ^ Transition r >
Passive * * Active users
users (contributors)

. . • ^ ' " " ' ^ - ^

Mondevelopers -•-Jl^i i ' -^f^ Developers

/
/ r. \ ^, Transition ^ ."- .

/ Codevelopers -*- *- Core developers

Reporting i | Suggesting I j Reviewing j Modifyiag ; | Making
bugs I { new features ! i code \ \ code i I decisions

Fixing ; ! Implementing
bugs ! i new features

Figure 1: A classification of roles and associated activities that contributing
F/OSS participants can perform [Gacek 2004]

Software Process Modelling 7

It is common in F/OSS projects to find end-users becoming contributors
or developers, and developers acting as end-users [Mockus 2002, Nakakoji
2002, Scacchi 2002, von Hippel 2002]. As most F/OSS developers are
themselves end-users of the software systems they build, they may have an
occupational incentive and vested interest in making sure their systems are
really useful. However the vast majority of participants probably simply
prefer to be users of F/OSS systems, unless or until their usage motivates
them to act through some sort of contribution. Avid users with sufficient
technical skills may actually work their way through each of the roles and
eventually become a core developer, as suggested by Figure 2. As a
consequence, participants within F/OSS project often participate in different
roles within both technical and social networks [Smith 1999, Preece 2000] in
the course of developing, using, and evolving F/OSS systems.

Figure 2: A layered meritocracy and role hierarchy [cf. Kim 2000]

Making contributions is often a prerequisite for advancing technically
and socially within a community, as is being recognized by other community
members as having made substantive contributions [Fielding 1999, Kim
2000]. Most commonly, F/OSS project participants contribute different types
of software representations or content (source code, bug reports, design
diagrams, execution scripts, code reviews, test case data, Web pages, email
comments, online chat, etc.) to Web sites of the F/OSS projects they join.
The contribution—^the authoring, hypertext linking (when needed), and
posting/uploading—of different types of content helps to constitute an
ecology [Erickson 2000, Spinuzzi 2000] of software informalisms [Scacchi
2002] that is specific to a F/OSS project, though individual content types are
widely used across most F/OSS projects. Similarly, the particular mix of
software informalisms employed by participants on a F/OSS project

8 Socio-Technical Interaction Networks in Free/Open Source Software Development Processes

articulates an information infrastructure [Star 1996] for framing and solving
problems that arise in the ongoing development, deployment, use, and
support of the F/OSS system at the center of a project.

Administrators of open software community Web sites and source code
repositories serve as gatekeepers in the choices they make for what
information to post, when and where within the site to post it, as well as
what not to post [Smith 1999]. Similarly, they may choose to create a site
map that constitutes a classification of site and domain content, as well as
community structure and boundaries [O'Mahony 2003].

Most frequently, participants in F/OSS projects engage in online
discussion forums or threaded email messages as a central way to observe,
participate in, and contribute to public discussions of topics of interest to
community participants [Yamauchi 2000]. However, these people also
engage in private online or offline discussions that do not get posted or
publicly disclosed, due to their perceived sensitive content.

Central to the development of F/OSS projects are software extension
mechanisms and F/OSS software copyright licenses that insure freedom
and/or openness. The extension mechanisms enable modification of the
functionality or architecture of software systems via intra-/inter-application
scripting or external module plug-in architectures. Copyright licenses, most
often derived from the GNU Public License (GPL), are attached to any
project developed software, so that it might be further accessed, examined,
debated, modified, and redistributed without loss of these rights in the future.
These public software licenses stand in contrast to the restricted access found
in closed source software systems and end-user license agreements.

Finally, in each of the six communities being examined, participants
choose on occasion to author and publish technical reports or scholarly
research papers about their software development efforts, which are publicly
available for subsequent examination, review, and secondary analysis.

2.2 Forming alliances and building community through
participation, artifacts, and tools

How does the gathering of individual F/OSS developers give rise to a
more persistent project team or self-sustaining community? Through choices
that developers make for their participation and contribution to an F/OSSD
project, they find that there are like-minded individuals who also choose to
participate and contribute to a project. These software developers find and
connect with each other through F/OSSD Web sites and online discourse
(e.g., threaded email discussions) [Monge 1998], and they find they share
many technical competencies, values, and beliefs in common [Crowston

Software Process Modelling 9

2002, Espinosa 2002, Elliott 2004]. This manifests itself in the emergence of
an occupational network of F/OSS developers [Elliott 2003].

Sharing beliefs, values, communications, artifacts and tools among
F/OSS developers enables not only cooperation, but also provides a basis for
shared experience, camaraderie, and learning [cf. Brown 1991, Fischer 2001,
George 1995]. F/OSS developers participate and contribute by choice, rather
than by assignment, since they find that conventional software development
work provides the experience of working with others who are assigned to a
development effort, whether or not they find that share technical approaches,
skills, competencies, beliefs or values. As a result, F/OSS developers find
they get to work with people that share their many values and beliefs in
common, at least as far as software development. Further, the values and
beliefs associated with free software or open source software are both
signaled and institutionalized in the choice of intellectual property licenses
(e.g., GPL) that F/OSSD projects adopt and advocate. These licenses in turn
help establish norms for developing free software or open source software,
as well as for an alliance with other F/OSSD projects that use the same
licenses.

More than half of the 80K F/OSS projects registered at SourceForce.net
Web portal employ the GNU General Public License (GPL) for free (as in
freedom) software. The GPL seeks to preserve and reiterate the beliefs and
practices of sharing, examining, modifying and redistributing F/OSS systems
and assets as property rights for collective freedom. A few large F/OSSD
project that seek to further protect the collective free/open intellectual
property rights do so through the formation of legally constituted non-profit
organizations or foundations (e.g., Free Software Foundation, Apache
Software Foundation, GNOME Foundation) [O'Mahony 2003]. Other OSS
projects, because of the co-mingling of assets that were not created as free
property, have adopted variants that relax or strengthen the rights and
conditions laid out in the GPL. Dozens of these licenses now exist, with new
ones continuing to appear (cf. www.opensource.org). An example of such a
variant appears in Exhibit 2. Finally, when OSSD projects seek to engage or
receive corporate sponsorship, and the possible co-mingling of
corporate/proprietary intellectual property, then some variation of a non-
GPL open source license is employed, as a way to signal a "business
friendly" OSSD project, and thus to encourage participation by developers
who want to work in such a business friendly and career enhancing project
[Hann 2002, Sharma 2002].

Developing F/OSS systems is a community and project team building
process that must be institutionalized within a community [Sharma 2002,
Smith 1999, Preece 2000] for its software informalisms (artifacts) and tools
to fiourish. Downloading, installing, and using F/OSS systems acquired from

10 Socio-Technical Interaction Networks in Free/Open Source Software Development Processes

Other F/OSS Web sites is also part of a community building process [Kim
2000]. Adoption and use of F/OSS project Web sites are a community wide
practice for how to publicize and share F/OSS project assets. These Web
sites can be built using F/OSS Web site content management systems (e.g.,
PhP-Nuke) to host project contents that can be served using F/OSS Web
servers (Apache), database systems (MySQL) or application servers (JBoss),
and increasingly accessed via F/OSS Web browsers (Mozilla). Furthermore,
ongoing F/OSS projects may employ dozens of F/OSS development tools,
whether as standalone systems like the software version control system CVS,
as integrated development environments like NetBeans or Eclipse, or as sub­
system components of their own F/OSS application in development. These
projects similarly employ asynchronous systems for project communications
that are persistent, searchable, traceable, public and globally accessible.

File gdit View go goolaiwrks

Rdoad

lools Window Help

w,wi2ardscom/D20/artH:le,asp'x-dt20010417i,0 ~ T] ^Search J^ ' i f " r j

Other Licenses:
Frequently Asked Questions

Version 1 0-February 9 2001

Please send comments,
questions, or feedback to
Mary-Eiizabeth Allen

Q: Are there other licenses that meet the definition of an Open Game?

A: Yes, tliere are several.

Q: How about the GNU licenses?

A: The General Public License (GPL), the Lesser General Public License (LGPL), and
the GNU Free Documentation License (GFDL) all provide terms that could be used to
publish an Open Game.

Q: There are lots of Open Source software licenses. Can those be used to
create Open Games?

A: In general, if a license meets the Open Source Definition, it will almost certainly
provide the tools to distribute an Open Game as well.

Q: Why not use those licenses then?

A: The biggest impediment to using the Open Source licenses is that most of them do
not provide for a separation between game rules and trademarks, setting content,
jfiction, illustrations, and maps. The Open Gaming License does this through the use of
Ithe Product Identity clause, and by not requinng that everything in a given work be Open
Game Content.

Q: How about the Dominion Rules License?

A: The DRL provides terms that can be used to publish an Open Game.

Q: What about the October Open Game License?

A: The October Open Game License provides terms that can be used to publish an
Open Game.

Q: Why not use one of those licenses then?

A: The DRL is designed to support the development of the Dominion Rules game system. While it is fully capable of
being used for a non-affiliated game system, the terms of the license will leave bits and pieces of the Dominion Rules
copyright notices and licensing requirements behind. It is simply not designed to be used as a generic Open Game
license.

iContentsofthisFAQ
I Copyright ©2001, by the
|Open Gaming Foundation
iMuch of the information
Icontained in this FAQ
I relates to copyright and
Itrademark law. The author,
iRyan Dancey, is notan
lattorney and makes no
Tepresentation about the
I accuracy of the legal
imaterial contained herein
iThis FAQ does not
^constitute legal advice.
iReaders are advised to
consult their own legal
ĉounsel before proceeding
with any Open Gaming
project. Permission is
granted to reproduce this
document, in whole or in
part, provided that this
notice is preserved intact.

Open earning Foundation Is;
Trademark owned by Ryan S.

Exhibit 2: An example of an open license insuring software redistribution and
modification freedoms like the GPL, as well as other rights specific to computer

games (source: http:www.wizards.com/D20/, February 2003)

Software Process Modelling 11

F/OSS systems, hyperlinked artifacts and tools, and project Web sites
serve as venues for socializing, building relationships and trust, sharing and
learning with others. "Linchpin developers" [Madey 2004] act as community
forming hubs that enable independent small F/OSS projects to come together
as a larger social network with the critical mass [Marwell 1993] needed for
their independent systems to be merged and experience more growth in size,
functionality, and user base. Whether this trend is found in traditional or
closed source software projects is unclear. F/OSSD Web sites also serve as
hubs that centralize attention for what is happening with the development of
the focal F/OSS system, its status, participants and contributors, discourse on
pending/future needs, etc. Furthermore, by their very nature, these Web sites
(those accessible outside of a corporate firewall) are generally global in
reach and accessibility. This means the potential exists for contributors to
come from multiple remote sites (geographic dispersion) at different times
(24/7), from multiple nations, representing the interests of multiple cultures
or ethnicity.

All of these conditions point to new kinds of requirements—for example,
community building requirements, community software requirements, and
community information sharing system (Web site and interlinked
communication channels for email, forums, and chat) requirements. These
requirements may entail both functional and non-functional requirements,
but they will most typically be expressed using open software informalisms,
rather than using formal notations based on some system of mathematical
logic.

Community building, alliance forming, and participatory contributing are
essential and recurring activities that enable F/OSSD projects to persist
without central corporate authority. Figure 3 depicts an example of a social
network of 24 F/OSS developers within 5 F/OSS projects that are
interconnected through two linchpin developers [Madey 2004]. Thus, linking
people, systems, and projects together through shared artifacts and sustained
online discourse enables a sustained socio-technical community, information
infrastructure [Star 1996], and network of alliances [Kling 2003, Monge
1998] to emerge.

2.3 Cooperating, coordinating, and controlling F/OSS
projects

Getting software developers to work together, even when they desire to
cooperate is not without its challenges for coordinating and controlling who
does what when, and to what they do it to. Conflicts arise in both F/OSSD
[Elliott 2003, Elliott 2004, Jensen 2004] and traditional software

12 Socio-Technical Interaction Networks in Free/Open Source Software Development Processes

development projects [Sawyer 2001], and finding ways to resolve conflicts
becomes part of the cost (in terms of social capital) that must be incurred by
F/OSS developers for development progress to occur. Minimizing the
occurrence, duration, and invested effort in such conflicts quickly becomes a
goal for the core developers in an F/OSSD project. Similarly, finding tools
and project organizational forms that minimize or mitigate recurring types of
conflicts also becomes a goal for experienced core developers.

OSS Developer - Social Network
Developers are nodes / Projects are links

24 Developers
5 Projects

2 Linchpin Developers
Project 686 2 1 Cluster

Project 7028

Project 7597

ce/j45*

Project 9859

Project 15850

Figure 3: A social network that links 24 developers in five projects through two
key developers into a larger F/OSS project community [cf. Madey 2004]

Software version control tools such as the concurrent versions system
CVS-itself an F/OSS system and document base [Fogel 1999]~have been
widely adopted for use within F/OSS projects. Tools like CVS are being
used as both a centralized mechanism for coordinating and synchronizing
F/OSS development, as well as a venue for mediating control over what
software enhancements, extensions, or upgrades will be checked-in and
made available for check-out throughout the decentralized community as
part of the publicly released version.

Software version control, as part of a software configuration management
activity, is a recurring situation that requires coordination but enables
stabilization and synchronization of dispersed and somewhat invisible
development work [Grinter 1996]. This coordination is required due to the
potential tension between centralized decision-making authority of a
project's core developers and decentralized work activity of project
contributors when two or more autonomously contributed software source

Software Process Modelling 13

code/content updates are made which overlap, conflict with one another, or
generate unwanted side-effects [Grinter 2003]. It is also practiced as a way
to manage, track, and control both desired and undesired dependencies
within the source code [deSouza 2003], as well as among its surrounding
informalisms [Scacchi 2002, 2004]. Tools like CVS thus serve to help
manage or mitigate conflicts over who gets to modify what, at least as far as
what changes or updates get included in the next software release from a
project. However, the CVS administrator or configuration control policies
provide ultimate authority and control mediated through such systems.

Each project team, or CVS repository administrator in it, must decide
what can be checked in, and who will or will not be able to check-in new or
modified software source code content. Sometimes these policies are made
explicit through a voting scheme [Fielding 1999], while in others they are
left informal, implicit, and subject to negotiation. In either situation, version
updates must be coordinated in order for a new system build and release to
take place. Subsequently, those developers who want to submit updates to
the community's shared repository rely extensively on online discussions
that are supported using "lean media" such as threaded email messages
posted on a Web site [Yamauchi 2000], rather than through onerous system
configuration control boards. Thus, software version control, system build
and release is a coordination and control process mediated by the joint use of
versioning, system building, and communication tools [Erenkrantz 2003].

F/OSSD projects teams can take the organizational form of a layered
meritocracy [Fielding 1999, Kim 2000] operating as a dynamically
organized virtual enterprise [Crowston 2002, Noll 1999]. A layered
meritocracy is a hierarchical organizational form that centralizes and
concentrates certain kinds of authority, trust, and respect for experience and
accomplishment within the team. However, it does not imply a single
authority, since decision-making may be shared among core developers who
act as peers at the top layer.

Figure 2 illustrates the form of a meritocracy common to many F/OSS
projects. In this form, software development work appears to be logically
centralized, while being physically distributed in an autonomous and
decentralized manner [Noll 1999]. However, it is neither simply a
"cathedral" or a "bazaar", as these terms have been used to describe
alternative ways of organizing software development projects. Instead, when
layered meritocracy operates as a virtual enterprise, it relies on virtual
project management (VPM) to mobilize, coordinate, control, build, and
assure the quality of F/OSS development activities. It may invite or
encourage system contributors to come forward and take a shared, individual
responsibility that will serve to benefit the F/OSS collective of user-
developers. VPM requires multiple people to act in the roles of team leader,

14 Socio-Technical Interaction Networks in Free/Open Source Software Development Processes

sub-system manager, or system module owner in a manner that may be
short-term or long-term, based on their skill, accomplishments, availability
and belief in community development. This implied requirement for virtual
project management can be seen in the text appearing within Exhibit 3.

^\, E4« &'*t ^Bv* ^ ^n^mvU look ^ K J Q W ^^

ill i ' . ^ . ' »JL fl |.^»^tp=//v^.pU>^t.*yh,.p^.,.au«^ ^ S > « ^ |
t : :• '

— ..lOfjcj

- •

Exhibit 3: An example statement for how a F/OSS computer game development
project seeks to organize and manage itself

(source: http://www.planeshift.it/helpus_recruit.html, March 2004)

Project participants higher up in the meritocracy have greater perceived
authority than those lower down. But these relationships are only effective as
long as everyone agrees to their makeup and legitimacy. Administrative or
coordination conflicts that cannot be resolved may end up either by splitting
or forking a new system version with the attendant need to henceforth take

Software Process Modelling 15

responsibility for maintaining that version, by reducing one's stake in the
ongoing project, or by simply conceding the position in conflict.

Virtual project management exists within F/OSS communities to enable
control via community decision-making, Web site administration, and CVS
repository administration in an effective manner. Similarly, VPM exists to
mobilize and sustain the use of privately owned resources (e.g., Web servers,
network access, site administrator labor, skill and effort) available for shared
use or collective reuse by the community.

Traditional software project management stresses planning and control
activities. In contrast, Lessig and others [Lessig 1999, Shah 2003] observe
that source code is an institution for collective action [O'Mahony 2003,
Ostrom 1990] that intentionally or unintentionally realizes a mode of social
control on those people who develop or use it. In the case of F/OSS
development, Lessig's observation would suggest that the source code
controls or constrains end-user and developer interaction, while the code in
software development tools, Web sites, and project assets accessible for
download controls, constrains, or facilitates developer interaction with the
evolving F/OSS system code. CVS is a tool that enables some form of social
control. However, the fact that the source code to these systems is available
in a free and open source manner offers the opportunity to examine, revise,
and redistribute patterns of social control and interaction in ways that favor
one form of project organization, system configuration control, and user-
developer interaction over others.

Beyond this, the ability for the eyes of many developers to review or look
over source code, system build and preliminary test results, and responses to
bug reports, also realizes peer review and the potential for embarrassment as
a form of indirect social control over the timely actions of contributing
F/OSS developers. Thus, F/OSSD allows for this dimension of VPM to be
open for manipulation by the core developers, so as to encourage certain
patterns of software development and social control, and to discourage
others that may not advance the collective needs of F/OSSD project
participants. Subsequently, F/OSSD projects are managed, coordinated and
controlled, though without the roles for traditional software project
managers.

2.4 Co-evolving socio-technical systems for F/OSS

Software maintenance, in the form of the addition/subtraction of system
functionality, debugging, restructuring, tuning, conversion (e.g.,
internationalization), and migration across platforms, is a widespread,
recurring process in F/OSS development communities. Perhaps this is not
surprising since maintenance is generally viewed as the major cost activity

16 Socio-Technical Interaction Networks in Free/Open Source Software Development Processes

associated with a software system across its life cycle. However, this
traditional characterization of software maintenance does not do justice for
what can be observed to occur within different F/OSS communities. Instead,
it may be better to characterize the overall evolutionary dynamic of F/OSS
as reinvention. Reinvention is enabled through the sharing, examination,
modification, and redistribution of concepts and techniques that have
appeared in closed source systems, research and textbook publications,
conferences, and the interaction and discourse between developers and users
across multiple F/OSS projects. Thus, reinvention is a continually emerging
source of improvement in F/OSS functionality and quality, as well as also a
collective approach to organizational learning in F/OSS projects [Brown
1991, Fischer 2001, Huntley 2003, George 1995].

Many of the largest and most popular F/OSS systems like the Linux
Kernel [Godfrey 2000, Schach 2002], GNU/Linux distributions [Gonzalez-
Barahona 2001, O'Mahony 2003], GNOME user interface [Koch 2002] and
others are growing at an exponential rate, as is their internal architectural
complexity [Schach 2002]. On the other hand the vast majority of F/OSS
projects are small, short-lived, exhibit little/no growth, and often only
involve the effort of one developer [Capiluppi 2003, Madey 2004]. In this
way, the overall trend derived from samples of 400-40K F/OSS projects
registered at the SourceForge.net Web portal reveals a power law
distribution common to large self-organizing systems. This means a few
large projects have a critical mass of at least 5-15 core F/OSS developers
[Mockus 2002] that act in or share project leadership roles [Fielding 1999]
that are surrounded by dozens to hundreds of other contributors, and
hundreds to millions of end users. These F/OSS projects that attain and
sustain such critical mass are those that inevitably garner the most attention,
software downloads, and usage. On the other hand, the vast majority of
F/OSS projects are small, lacking in critical mass, and thus unlikely to thrive
and grow.

The layered meritocracies that arise in F/OSS projects tend to embrace
incremental innovations such as evolutionary mutations to an existing
software code base over radical innovations. Radical change involves the
exploration or adoption of untried or sufficiently different system
functionality, architecture, or development methods. Radical software
system changes might be advocated by a minority of code contributors who
challenge the status quo of the core developers. However, their success in
such advocacy usually implies creating and maintaining a separate version of
the system, and the potential loss of a critical mass of other F/OSS
developers. Thus, incremental mutations tend to win out over time.

F/OSS systems seem to evolve through minor improvements or
mutations that are expressed, recombined, and redistributed across many

Software Process Modelling 17

releases with short duration life cycles. End-users of F/OSS systems who act
as developers or maintainers continually produce these mutations. These
mutations appear initially in daily system builds. These modifications or
updates are then expressed as a tentative alpha, beta, release candidate, or
stable release versions that may survive redistribution and review, then
subsequently be recombined and re-expressed with other new mutations in
producing a new stable release version. As a result, these mutations
articulate and adapt an F/OSS system to what its developer-users want it to
do in the course of evolving and continually reinventing the system.

Last, closed source software systems that were thought to be dead or
beyond their useful product life or maintenance period may be revitalized
through the redistribution and opening of their source code. However, this
may only succeed in application domains where there is a devoted
community of enthusiastic user-developers who are willing to invest their
time and skill to keep the cultural heritage of their former experience with
such systems alive. Exhibit 4 provides an example for vintage arcade games
now numbering in the thousands that are being revitalized and evolved
through F/OSS systems.

Exhibit 4: A graphic display depicting sustained growth in the number of
vintage arcade ROM sets and games migrated into open source for use on

contemporary computer platforms
(source: http://www.mame.net/chart.html, March 2004)

18 Socio-Technical Interaction Networks in Free/Open Source Software Development Processes

Overall, F/OSS systems co-evolve with their development communities.
This means the evolution of one depends on the evolution of the other. Said
differently, an F/OSS project with a small number of developers (most
typically one) will not produce and sustain a viable system unless/until the
team reaches a larger critical mass of 5-15 core developers. However, if
critical mass is achieved, then it may be possible for the F/OSS system to
grow in size and complexity at a sustained exponential rate, defying the laws
of software evolution that have held for decades [Lehman 1980, Scacchi
2004b]. Furthermore, user-developer communities co-evolve with their
systems in a mutually dependent manner [Elliott 2004, Nakakoji 2002,
O'Mahony 2003, Scacchi 2002], and system architectures and functionality
grow in discontinuous jumps as independent F/OSS projects decide to join
forces [Godfrey 2000, Nakakoji 2002, Scacchi 2002b]. Whether this trend is
found in traditional or closed source software projects is unclear. But what
these findings and trends do indicate is that it appears that the practice of
F/OSS development processes is different from the processes traditionally
advocated for software engineering.

3. LIMITATIONS AND CONSTRAINTS OF STINs
ON F/OSS DEVELOPMENT PROCESSES

F/OSS is certainly not a panacea for developing complex software
systems, nor is it simply software engineering done poorly. Instead, it
represents an alternative community-intensive approach to develop software
systems and related artifacts, as well as social relationships. However, it is
not without its limitations and constraints. Thus, we should be able to help
see these limits as manifest within or through STINs for each of the four
types of processes examined above.

First, in terms of participating, joining, and contributing to F/OSS
projects, a developer's interest, motivation, and commitment to a project and
its contributors is dynamic and not indefinite. F/OSS developers are loathe to
find themselves contributing to a project that is realizing commercial or
financial benefits that are not available to all contributors, or that are
concentrated to benefit a particular company, again without some share
going to the contributors. Some form of reciprocity seems necessary to
sustain participation, whereas a perception of exploitation by others can
quickly dissolve a participant's commitment to further contribute, or worse
to dissuade other participants to abandon an open source project that has
gone astray. If linchpin developers lose interest, then unless another
contributor comes forward to fill in or take over role and responsibility for

Software Process Modelling 19

the communication and coordination activities of such key developers, then
the F/OSS system may quickly become brittle, fragile, and difficult to
maintain. Thus, participation, joining, and contributing must become
sustained activities on an ongoing basis within F/OSS projects for them to
succeed.

Second, in terms of forming alliances and building community through
participation, artifacts, and tools points to a growing dependence on other
F/OSS projects. The emergence of non-profit foundations that were
established to protect the property rights of large multi-component F/OSS
project creates a demand to sustain and protect such foundations. If a
foundation becomes too bureaucratic as a result to streamline its operations,
then this may drive contributors away from a project. So, these foundations
need to stay lean, and not become a source of occupational careers, in order
to survive and evolve. Similarly, as F/OSS projects give rise to new types of
requirements for community building, community software, and community
information sharing systems, these requirements need to be addressed and
managed by F/OSS project contributors in roles above and beyond those
involved in enhancing the source code of a F/OSS project. F/OSS alliances
and communities depend on a rich and growing web of socio-technical
relations. Thus, if such a web begins to come apart, or if the new
requirements cannot be embraced and satisfied, then the F/OSS project
community and its alliances will begin to come apart.

Third, in terms of cooperation, coordination, and control, F/OSS projects
do not escape conflicts in technical decision-making, or in choices of who
gets to work on what, or who gets to modify and update what. As F/OSS
projects generally lack traditional project managers, then they must become
self-reliant in their ability to mitigate and resolve outstanding conflicts and
disagreements. Beliefs and values that shape system design choices, as well
as choices over which software tools to use, and which software artifacts to
produce or use, are determined through negotiation rather than
administrative assignment. Negotiation and conflict management then
become part of the cost that F/OSS developers must bear in order for them to
have their beliefs and values fulfilled. It is also part of the cost they bear in
convincing and negotiating with others often through electronic
communications to adopt their beliefs and values. Time, effort, and attention
spent in negotiation and conflict management are not spent building and
improving source code, but they do represent an investment in building and
sustaining a negotiated socio-technical network of dependencies.

Last, in terms of the co-evolution of F/OSS systems and community, as
already noted, individual and shared resources of people's time, effort,
attention, skill, sentiment (beliefs and values), and computing resources are
part of the socio-technical web of F/OSS. Reinventing existing software

20 Socio-Technical Interaction Networks in Free/Open Source Software Development Processes

systems as F/OSS coincides with the emergence or reinvention of a
community who seeks to make such system reinvention occur. F/OSS
systems are common pool resources [Ostrom 1990] that require collective
action for their development, mobilization, use, and evolution. Without the
collective action of the F/OSS project community, the common pool will dry
up, and without the common pool, the community begins to fragment and
disappear, perhaps to search for another pool elsewhere.

4. CONCLUSIONS

Free/open source software development practices are giving rise to a new
view of how complex software systems can be constructed, deployed, and
evolved on a global basis. F/OSS development does not adhere to the
traditional rationality found in the legacy of software engineering life cycle
models or prescriptive standards. F/OSS development is inherently a
complex web of socio-technical processes, development situations, and
dynamically emerging interaction networks. This paper examines and
analyzes results from empirical studies that begin to outline some of the
socio-technical activities that situate how F/OSS systems are developed in
different communities. In particular, examples drawn from different F/OSS
project communities reveal how processes and practices for the development
and propagation of F/OSS technology are intertwined and mutually situated
to the benefit of those motivated to use and contribute to it.

The future of research in the development and use of STINs as a
conceptual framework for observing and analyzing F/OSSD processes and
practices seems likely to focus attention to the following topics.

First, the focus of software process research is evolving to include
attention to socio-technical processes of people, resources, organizational
forms, and institutional rules that embed and surround an F/OSS system, as
well as how they interact and interface with one another. Such a focus draws
attention to the web of socio-technical relations that interlink people in
particular settings to a situated configuration of globally available Web-
based artifacts and locally available resources (skills, time, effort,
computing) that must collectively be mobilized or brought into alignment in
order for a useful F/OSS system to be continuously (re)designed to meet
evolving user needs.

Second, participation in F/OSS system design, assertion of system
requirements, or design decision-making is determined by effort,
willingness, and prior public experience in similar situations, rather than by
assignment by management or some other administrative authority.
Similarly, the openness of the source code/content of a F/OSS system

Software Process Modelling 21

encourages and enables many forms of transparency, access, and ability to
customize/localize a system's design to best address user/developer needs in
a particular site or installation.

Third, people who participate in the development, deployment, and
evolution of F/OSS often do it on a voluntary or self-selected basis. These
people quickly recognize the need to find ways to cooperate and collaborate
in order to minimize individual effort and conflict while maximizing
collective accomplishment. This is most easily observed in the online (or
Web-based) communications, shared source code files and directories,
application invocation or system configuration scripts, Web pages and
embedded hyperlinks, and other textual artifacts that people in free/open
source software project communities employ as the media, content, and
(hyperlinked) context of system design and evolution. However, there is a
continually emerging need to minimize and mitigate conflicts that arise in
F/OSSD projects due to the absence of a traditional project management
regime that might otherwise act to competently resolve (or to incompetently
bungle) such software development conflicts. As a result, F/OSSD projects
have adapted or evolved the use of tools, interlinked artifacts, and
organizational forms that effectively create a project management capability
and socio-technical control framework without (traditional) project
managers.

Fourth, the world of F/OSSD is different in many interesting ways and
means when compared to the world of software engineering within corporate
or centralized enterprise settings. Knowing and understanding one does not
provide a sufficient basis for assuming an understanding of the other, yet
both worlds develop complex software systems and artifacts using
development processes that may (or may not) be well understood. This
analysis of the socio-technical interaction networks that facilitate and
constrain F/OSSD processes and practices points to new concepts, situations,
events, and data for understanding how large software systems are
developed, deployed, and evolved within F/OSSD communities of practice.
Each merits further study, articulation, and refinement.

Last, the four preceding research directions collectively begin to draw
attention to matters beyond software development processes, as traditionally
addressed. Instead, future STIN and software process research can employ
Web analyses [Kling 1982, Kling 2003], ethnographic methods [Elliott
2004, Scacchi 2002, Viller 2000] and contemporary socio-technical system
design techniques [Scacchi 2004c] to study and model how people
accomplish software development processes and practices in an
organizational setting using F/OSS systems, artifacts, tools, people, and
circumstances at hand. Understanding the F/OSS system or interaction
network will need to include understanding the workplace, inter-

22 Socio-Technical Interaction Networks in Free/Open Source Software Development Processes

organizational networks, social worlds and cultural milieu that embed and
situate how people interact with and through the F/OSS systems at hand in
the course of their work and workflows. Similarly, there is a basic need to
discover new ways and means that enable traditional software developers to
understand and become users of F/OSSD practices so as to empower and
sustain both traditional and F/OSS developers in their collective effort to
continuously improve their software development skills, practices, and
processes. This chapter therefore represents a step in this direction.

ACKNOWLEDGEMENTS

The research described in this chapter is supported by grants #ITR-
0083075, #ITR-0205679, #ITR-0205724, and #ITR-0350754 from the U.S.
National Science Foundation. No endorsement implied. Mark Ackerman at
University of Michigan, Ann Arbor; Les Gasser at University of Illinois,
Urbana-Champaign; John Noll at Santa Clara University; and Margaret
Elliott and Chris Jensen at the UCI Institute for Software Research are
collaborators on the research described in this chapter.

REFERENCES

Atkinson, CJ., Socio-Technical and Soft Approaches to Information Requirements EHcitation
in the Post-Methodology Era, Requirements Engineering, 5, 67-73, 2000.

Bjerknes, G. and Bratteteig, T., User Participation and Democracy. A Discussion of
Scandinavian Research on System Development, Scandinavian Journal of Information
Systems,l{\),l^-n,\995.

Bergquist, M. and Ljungberg, J., The Power of Gifts: Organizing Social Relationships in
Open Source Communities, Info. Systems J., 11, 305-320, 2001.

Beyer, H. and Holtzblatt, K., Contextual Design: A Customer-Centered Approach to Systems
Designs, Morgan Kaufmann Publishers, San Francisco, CA, 1997.

Brown, J.S. and Duguid, P., Organizational Learning and Communities-of-Practice: Toward a
Unified View of Working, Learning, and Innovation, Organization Science, 2(1), 40-57,
1991.

Callon, M., Law, J. and Rip, J., (eds.), Mapping the Dynamics of Science and Technology:
Sociology of Science in the Real World, Macmillan Press, London, 1986.

Software Process Modelling 23

Capilupppi, A., Lago, P. and Morisio, M., Evidences in the Evolution of OS Projects through
Changelog Analyses, Proc. 3rd Workshop on Open Source Software Engineering,
Portland, OR, May 2003.

Crowston, K., Annabi, H. and Howison, J., Defining Open Source Software Project Success,
Proc. 24th Intern. Conf. Information Systems (ICIS-2003), December 2003.

Crowston, K. and Scozzi, B., Open Source Software Projects as Virtual Organizations:
Competency Rallying for Software Development, lEE Proceedings-Software, 149(1), 3-
17,2002.

Ehn, P. and Kyng, M., The Collective Resource Approach to System Design, in G. Bjerknes,
P. Ehn, and M. Kyng (eds.). Computers and Democracy—a Scandinavian Challenge,
Avebury, Aldershot, 1987.

Emery, F.E. and Trist, E.L., Socio-Technical Systems, in C.W. Churchman & M. Verhurst
(eds.), Management Science, Models and Techniques, Vol. 2, 83-97, Pergamon Press,
London, 1960.

Elliott, M. and Scacchi, W., Free Software Developers as an Occupational Community:
Resolving Conflicts and Fostering Collaboration, Proc. ACM Intern. Conf. Supporting
Group Work, 21-30, Sanibel Island, FL, November 2003.

Elliott, M. and Scacchi, W., Free Software Development: Cooperation and Conflict in A
Virtual Organizational Culture, in S. Koch (ed.), Free/Open Source Software
Development, Idea Publishing, to appear, 2004.

Erenkrantz, J., Release Management within Open Source Projects, Proc. 3rd. Workshop on
Open Source Software Engineering, 25th. Intern. Conf. Software Engineering, Portland,
OR, May 2003.

Erickson, T., Making Sense of Computer-Mediated Communication (CMC): CMC Systems
as Genre Ecologies, Proc. 33rd Hawaii Intern. Conf. Systems Sciences, IEEE Press, 1-10,
January 2000.

Espinosa, J. A., Kraut, R.E., Slaughter, S. A., Lerch, J. F., Herbsleb, J. D. and Mockus, A.,
Shared Mental Models, Familiarity, and Coordination: A Multi-Method Study of
Distributed Software Teams, Intern. Conf Information Systems, 425-433, Barcelona,
Spain, December 2002.

Fielding, R.T., Shared Leadership in the Apache Project, Communications ACM, 42(4), 42-
43, 1999.

Fischer, G., External and Shareable Artifacts as Opportunities for Social Creativity in
Communities of Interest, in J. S. Gero and M. L. Maher (eds.), Proc. Computational and
Cognitive Models of Creative Design, 67-89, Heron Island, Australia, December 2001.

Fogel, K., Open Source Development with CVS, Coriolis Press, Scottsdale, AZ, 1999.

24 Socio-Technical Interaction Networks in Free/Open Source Software Development Processes

Gacek, C. and Arief, B., The Many Meanings of Open Source, IEEE Software, 21(1), 34-40,
January/February 2004.

George, J.F., lacono, S. and Kling, R., Learning in Context: Extensively Computerized Work
Groups as Communities-of-Practice, Accounting, Management and Information
Technology, 5(3/4), 185-202, 1995.

Godfrey, M.W. and Tu, Q., Evolution in Open Source Software: A Case Study, Proc. 2000
Intern. Conf Software Maintenance (ICSM-00), San Jose, CA, October 2000.

Gonzalez-Barahona, J.M., Ortuno Perez, M.A., de las Heras Quiros, P., Centeno Gonzalez, J.
and Matellan Olivera, V., Counting Potatoes: The Size of Debian 2.2, Upgrade Magazine,
11(6), 60-66, December 2001.

Grinter, R.E., Supporting Articulation Work Using Software Configuration Management
Systems, Computer Supported Cooperative Work, 5(4), 447-465, 1996.

Grinter, R.E., Recomposition: Coordinating a Web of Software Dependencies, Computer
Supported Cooperative Work, 12(3), 297-327, 2003.

Hann, I-H., Roberts, J., Slaughter, S. and Fielding, R., Economic Incentives for Participating
in Open Source Software Projects, Proc. Twenty-Third Intern. Conf. Information Systems,
365-372, December 2002.

Hars, A. and Ou, S., Working for Free? Motivations for participating in open source projects,
Intern. J. Electronic Commerce, 6(3), 2002.

Hertel, G., Neidner, S. and Hermann, S., Motivation of software developers in Open Source
projects: an Internet-based survey of contributors to the Linux kernel. Research Policy,
32(7), 1159-1177, July 2003.

Huntley, C.L., Organizational Learning in Open-Source Software Projects: An Analysis of
Debugging Data, IEEE Trans. Engineering Management, 50(4), 485-493, 2003.

Jensen, C. and Scacchi, W., Collaboration, Leadership, and Conflict Negotiation in the
NetBeans.org Community, Proc. 4th Workshop on Open Source Software Engineering,
Edinburgh, UK, May 2004.

Kim, A.J., Community-Building on the Web: Secret Strategies for Successful Online
Communities, Peachpit Press, 2000.

Kling, R., Kim, G. and King, R., A Bit More to IT: Scholarly Communication Forums as
Socio-Technical Interaction Networks, Journal American Society for Information Science
and Technology, 54(1), 47-67, 2003.

Kling, R. and Scacchi, W. The Web of Computing: Computer Technology as Social
Organization, in A. Yovits (ed.). Advances in Computers, 21, Academic Press, 3-85, 1982.

Software Process Modelling 25

Koch, S. and Schneider, G., Effort, Co-operation and Co-ordination in an Open Source
Software Project: GNOME, Info. Sys. J., 12(1), 27-42, 2002.

Latour, B., Science in Action, Harvard University Press, Cambridge, MA, 1987.

Law, J. and Hassard, J., (eds.). Actor Network Theory and After, Blackwell Publishers, 1999.

Lehman, M.M., Programs, Life Cycles, and Laws of Software Evolution, Proc. IEEE, 68,
1060-1078, 1980.

Lemer, J. and Tirole, J., Some Simple Economics of Open Source, J. Industrial Economics,
50(2), 197-234,2002.

Lessig, L., CODE and Other Laws of Cyberspace, Basic Books, New York, 1999.

Madey, G., Freeh, V. and Tynan, R., Modeling the F/OSS Community: A Quantative
Investigation, in Koch, S., (ed.), Free/Open Source Software Development, Idea
Publishing, to appear, 2004.

Marwell, G. and Oliver, P., The Critical Mass in Collective Action: A Micro-Social Theory.
Cambridge University Press, 1993.

Mockus, A., Fielding, R. and Herbsleb, J.D., Two Case Studies of Open Source Software
Development: Apache and Mozilla,^ CM Transactions on Software Engineering and
Methodology, 11(3), 309-346, 2002.

Monge, P.R., Fulk, J., Kalman, M.E., Flanagin, A.J., Pamassa, C. and Rumsey, S., Production
of Collective Action in Alliance-Based Interorganizational Communication and
Information Systems, Organization Science, 9(3), 411-433, 1998.

Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K. and Ye,Y., Evolution Patterns of
Open-Source Software Systems and Communities, Proc. 2002 Intern. Workshop
Principles of Software Evolution, 76-85, 2002.

Noll, J. and Scacchi, W., Supporting Software Development in Virtual Enterprises, J. Digital
Information, 1(4), February 1999.

O'Mahony, S., Guarding the Commons: How community managed software projects protect
their work. Research Policy, 32(7), 1179-1198, July 2003.

O'Mahony, S., Developing Community Software in a Commodity World, in M. Fisher and G.
Downey (eds.), Frontiers of Capital: Ethnographic Reflections on the New Economy,
Social Science Research Council, to appear, 2004.

Ostrom, E., Calvert, R. and T. Eggertsson (eds.). Governing the Commons: The Evolution of
Institutions for Collective Action, Cambridge University Press, 1990.

26 Socio-Technical Interaction Networks in Free/Open Source Software Development Processes

Paulson, J.W., Succi, G. and Eberlein, A., An Empirical Study of Open-Source and Closed-
Source Software Products, IEEE Trans. Software Engineering, 30(4), 246-256, April
2004.

Pavelicek, R., Embracing Insanity: Open Source Software Development, SAMS Publishing,
Indianapolis, IN, 2000.

Preece, J., Online Communities: Designing Usability, Supporting Sociability, John Wiley &
Sons, Chichester, UK, 2000.

Sawyer, S., Effects of intra-group conflict on packaged software development team
pQrformancQ, Information Systems J., 11, 155-178,2001.

Scacchi, W., Understanding the Requirements for Developing Open Source Software
Systems, lEE Proceedings-Software, 149(1), 24-39, February 2002.

Scacchi, W., Free/Open Source Software Development Practices in the Computer Game
Community, IEEE Software, 21(1), 59-67, January/February 2004a.

Scacchi, W., Understanding Free/Open Source Software Evolution, in N.H. Madhavji, M.M.
Lehman, J.F. Ramil and D. Perry (eds.). Software Evolution, John Wiley and Sons Inc,
New York, to appear, 2004b.

Scacchi, W., Socio-Technical Design, to appear in W. S. Bainbridge (ed.). The Encyclopedia
of Human-Computer Interaction, Berkshire Publishing Group, 2004c.

Schuler, D. and Namioka, A.E., Participatory Design: Principles and Practices, Mahwah, NJ,
Lawrence Erlbaum Associates, 1993.

Schach, S.R., Jin, B., Wright, D.R., Heller, G.Z. and Offutt, A.J., Maintainability of the
Linux Kernel, lEE Proceedings-Software, 149(1), 18-23, February 2002.

Shah, R.C. and Kesan, J.P., Manipulating the governance characteristics of code. Info, 5(4), 3-
9, 2003.

Sharma, S., Sugumaran and Rajagopalan, B., A Framework for Creating Hybrid Open-Source
Software Communities, Information Systems J., 12(1), 7-25, 2002.

Sim, S.E. and Holt̂ R.C, The Ramp-Up Problem in Software Projects: A Case Study of How
Software Immigrants Naturalize, Proc. 20th Intern. Conf. Software Engineering, Kyoto,
Japan, 361-370, 19-25 April, 1998.

Smith, M. and KoUock, P. (eds.), Communities in Cyberspace, Routledge, London, 1999.

Spinuzzi, C. and Zachry, M., Genre Ecologies: An open-system approach to understanding
and constructing documentation, J. Computer Documentation, 24(3), 169-181, 2000.

Software Process Modelling 27

de Souza, C.R.B., Redmiles, D., Mark, G., Penix, J. and Sierhuis, M., Management of
interdependencies in collaborative software development, Proc. 2003 Intern. Symp.
Empirical Software Engineering (ISESE 2003), IEEE Computer Society, 294-303, 2003.

Star, S.L. and Ruhleder, K., Steps Toward an Ecology of Infrastructure: Design and Access
for Large Information Spaces, Information Systems Research, 7(1), 111-134, March 1996.

Stewart, K.J. and Gosain, S., An Exploratory Study of Ideology and Trust in Open Source
Development Groups, Proc. 22"^ Intern. Conf. Information Systems (ICIS-2001), in New
Orleans, LA. 2001.

Truex, D., Baskerville, R. and Klein, H., Growing Systems in an Emergent Organization,
Communications ACM, A2{^), 117-123, 1999.

Viller, S. and Sommerville, I., Ethnographically informed analysis for software engineers,
Intern. J. Human-Computer Studies, 53, 169-196, 2000.

von Hippel, E. and Katz, R., Shifting Innovation to Users via Toolkits, Management Science,
48(7), 821-833, July 2002.

von Krogh, G., Spaeth, S. and Lakhani, K., Community, Joining, and Specialization in Open
Source Software Innovation: A Case Study, Research Policy, 32{1), 1217-1241, July 2003.

Yamauchi, Y., Yokozawa, M., Shinohara, T. and Ishida, T., Collaboration with Lean Media:
How Open-Source Software Succeeds, Proc. Computer Supported Cooperative Work
Conf (CSCWOO), 329-338, Philadelphia, PA, ACM Press, December 2000.

Chapter 2

OPEN SOURCE SOFTWARE DEVELOPMENT
PROCESS MODELING

Jacques LONCHAMP
LORIA, BP 254, 54500 Vandoeuvre-les-Nancy, France. E-mail: jloncham@loria.fr

Abstract: This chapter draws attention to software process modeling for open source
software development. It proposes a three-layered open source software
development process model. Its 'definitional' and 'generic' levels specify the
common features of all fully-fledged open source projects. Its 'specific' level
allows to describe fine-grained process model fragments characteristic of
different open source projects. In this chapter, the specific level is exemplified
with the release management process of NetBeans IDE and Apache HTTP
Server projects. The underlying modeling approach is SPEM (Software
Process Engineering Meta-model) from the OMG. The paper closes with a
discussion of the interest of explicit software process models for (1) process
understanding and communication, (2) process comparison, reuse, and
improvement, (3) process enactment support.

Key words: Open source software development process modeling; open source software
development; open source software; SPEM; software process modeling.

INTRODUCTION

In the last ten years, open source software (OSS) has attracted the
attention of not only the practitioner, but also the business and the research
communities. In short, OSS is a software whose source code may be freely
modified and redistributed with few restrictions, and which is produced by
loosely organized, ad-hoc communities consisting of contributors from all
over the world who seldom if ever meet face-to-face, and who share a strong
sense of commitment [1]. The basic principle for the OSS development
process (OSSDP) is that by sharing source code, developers cooperate under

30 Open Source Software Development Process Modeling

a model of systematic peer-review, and take advantage of parallel debugging
that leads to innovation and rapid advancement [2]. Today, Linux and
Apache Server are used in respectively 30% and 60% of the Internet's public
servers. This demonstrates that OSSDP can produce software of high quality
and functionality. Other success stories include Perl, Tel, Python and PHP
programming languages, sendmail mail handler, Mozilla browser, MySQL
database server. Eclipse and NetBeans Java integrated development
environments. Recently, many organizations have started to look towards
OSS and OSSDP as a way to minimize their development efforts by reusing
open source code and to provide greater flexibility in their development
practices [3].

Two factors may impede this growing interest in OSSDP. First, neither
Apache, Mozilla, NetBeans, or any other OSS projects, provide documents
on their Web portals that explicitly and precisely describe what development
processes are employed. OSS projects do not typically provide explicit
process models, prescriptions, or schemes other than what may be implicit in
the use of certain development tools for version control and source code
compilation. Secondly, most studies that report on OSS projects like Apache
and Mozilla [4, 5, 6] provide only informal narrative descriptions of the
overall software development process. Such narrative descriptions cannot be
easily analyzed, compared, visualized, enacted, and transferred for reuse in
other projects. Consequently, developers who want to join an OSS project
must discover its underlying development process by using public
information sources on the Web. These sources include process enactment
information such as informal task prescriptions, community and information
structure, work roles, project and product development histories, electronic
messages and communications patterns among project participants. Such a
discovery approach is very tedious and the variability in development
process performance across iterations can blur its results. Similarly, software
engineers wanting to start a new OSS project, cannot reuse explicit
descriptions or models of the software processes and must discover them
through ad hoc trial-and-error. Finally, government agencies, academic
institutions and industrial firms which begin to consider OSSDP seek to find
what are the best processes or development practices to follow [7]. Explicit
modeling of these processes in forms that can be shared, reviewed, modified,
and redistributed could be an important contribution to their dissemination
and continuous improvement.

The lack of interest in software process modeling techniques observed
within and outside of the open source community can be attributed to several
reasons. First, it could be argued that OSS projects are ingrained in the
hacker culture and represents the antithesis of software engineering [8], with
a 'bazaar' [9] or 'development in the wild' style. Just as there is no single

Software Process Modelling 31

development model for proprietary software, neither is there only one
detailed model in the OSS world. However, many observations show that at
least a set of common features (roles, activities, tools, etc.) are shared by
many fully-fledged OSS projects, i.e., it exists a kind of high level generic
software process model that we will try to specify. Secondly, it could be
objected that OSS development practices are continuously evolving in these
communities whose members operate with a high degree of autonomy.
Therefore, modeling such processes at the risk of freezing them could be
counterproductive. Our observations suggest that most of these evolutions
stay at a very detailed level. Other observations relate evolutions to the
infancy of OSS projects and to temporary crisis periods [10]. The most
important process fragments of a mature project seem rather stable and often
core participants make efforts in order to stabilize and standardize them.
Lastly, process model formalisms are often criticized: they would be too
complex, too low level and fine-grained and not easy to use and share. We
will show that the Software Process Engineering Meta-model (SPEM) [11]
from the Object Management Group (OMG) can constitute a good candidate
for OSSDP modeling because of two main reasons: first, it provides a
minimal set of modeling elements, allowing both structural and behavioral
descriptions at different levels of formality and granularity, and second, it
uses UML [12] as a notation.

This chapter is organized around four themes. First, some definitions
about open source projects are given and the consequences of their diversity
from the process modeling perspective are discussed. Second, the SPEM
meta model that we use for modeling OSSDPs is presented. Third, our three-
layered model proposal with its 'definitional', 'generic', and 'specific' levels
is described and illustrated. Finally, the interest of software process
modeling of OSS projects for (1) process understanding and communication,
(2) process comparison, reuse and improvement, (3) process enactment
support, is discussed.

2. OPEN SOURCE PROJECTS

It is frequent to make a distinction between the terms 'free software' and
'open source software'. Free software refers not to price but to liberty to
modify and redistribute source code. The Free Software Foundation [13],
founded by Richard Stallman, advocates the use of its GNU General Public
License (GPL) as a copyright license which creates and promotes freedom.
He writes "to understand the concept, you should think of free speech, not
free beer" [14]. The term 'open source' was coined by a group of people
concerned that the term 'free software' was anathema to businesses. This

32 Open Source Software Development Process Modeling

resulted in the creation of the Open Source Initiative (OSI) [15]. We use the
acronym OSS for both movements for the sake of simplicity and because
both movements share most of their practical goals and follow similar
development processes. The OSI definition [16] includes the following
criteria:

- free redistribution: the license shall not restrict any party from selling
or giving away the software as a component of an aggregate software
distribution; no royalty or fee is required for such sale,

- source code: the program must include source code,
- derived works: modifications and derived works are allowed, not

necessarily subject to the same license as the original work,
- integrity of author's source code: derived works must carry different

names or version numbers than the original work,
- no discrimination against persons or groups,
- no discrimination against fields of endeavor,
- distribution of license: no need of any additional license,
- license must not be specific to a product,
- license must not restrict other software,
- license must be technology-neutral.
GNU GPL, BSD, Apache, MPL (Mozilla) and Artistic (Perl) licenses are

all examples of licenses that conform the OSI definition, unlike Sun
Community Source License [8].

Another distinction can be drawn between OSS projects that result from
the initiative of a given individual or group of individuals, and OSS projects
that are supported by, or organized within, industrial software companies.
Examples here include the NetBeans [17] and Eclipse [18] OSS projects that
are both developing Java-based interactive development environments,
based in part on the corporate support respectively from SUN and IBM. The
consequences are noticeable in the way these projects are managed (e.g.
composition of the steering committee, decision-making processes) and
through the existence of peripheral processes under the exclusive
responsibility of the company which backs the project (mainly quality
insurance processes). But as will be shown in section 4.3.1 the release
process of NetBeans is not deeply impacted by such a corporate support.

OSS projects can also be classified into communities of interest, centered
about the production of software for different application domains, such as
games, Internet infrastructure, software system design, astronomy, etc. This
factor has a low impact on how the software is produced [19].

At the opposite, the project community size is important. Below some
critical mass, in terms of active developers, OSSDPs do not match our
generic description, as for instance the extreme case of the 'solo work,
internal patches' scenario of [20]. The definitional level of our model

Software Process Modelling 33

specifies what a 'fully-fledged' OSS project is, roughly corresponding to the
'team work, external patches' scenario [20].

3. SPEM META MODEL DESCRIPTION

This section presents the Software Process Engineering Meta-model
(SPEM) defined by the OMG. SPEM is a meta-model for defining software
engineering process models and their components [11]. A tool based on
SPEM would be a tool for process model authoring and customizing. The
actual enactment of processes, i.e. planning and executing a project using a
process model described with SPEM, is not in the scope of this process
modeling approach.

The modeling approach is object-oriented and uses UML as a notation
[12]. The SPEM specification is structured as a UML profile, i.e. a set of
stereotypes, tags and constraints added to the UML standard semantics, and
provides also a complete MOF-based meta-model [21]. SPEM is built from
the SPEMFoundation package, which is a subset of UML 1.4, and the
SPEM_Extensions package, which adds the constructs and semantics
required for software process engineering. Such an approach facilitates
exchange with both UML tools and Meta Object Facility (MOF) based tools
or repositories. Figure 1 shows the four-layered architecture of modeling as
defined by the OMG.

M4

M3

M2

M1

Meta Object Facility (MOF)

Process Meta-model (SPEM)

Process Model (e.g. RUP, OPEN,
XP.OSSDP)

Performing process as really
enacted in a real project

Figure 1: The OMG modeling architecture

At the core of SPEM is the idea that a software development process is a
collaboration between abstract active entities, called 'Process Roles', that
perform operations, called 'Activities', on concrete, tangible entities, called
'Work Products'. More precisely (see Figure 2), a process model definition
is built out of Model Elements. Each Model Element describes one aspect of
a software engineering process, and can be associated to an External

34 Open Source Software Development Process Modeling

Description in some natural language, suitable for a reader of the process
model. A Dependency is a process-specific relationship between process
Model Elements. For instance, a 'precedes' dependency acts from one
Activity (or Work Definition) to another to indicate start-start, finish-start or
finish-finish dependencies between the work described, depending on the
value of the 'kind' attribute. Guidance is a Model Element associated with
the major Model Elements, which contains additional descriptions for
practitioners such as techniques, guidelines and UML profiles, procedures,
standards, templates of work products, examples of work products,
definitions, and so on.

External Description 0.*

5:
Precondition

1

0.*

Goal

0 *

1

Work Definition

zr^—i
0.*

Phase

0 *

Iteration

Life Cycle

0..1

Model Element

1 ,

Guidance

1 +client 0 * |

Hsupplier

0 .*

Dependency

Process Performer

+performer I
Worl< Product

Process Role

Activity Parameter

Activity

H

0 . *

0 1

1
+type

<• re sponsible
Role

~lo..i

Package

/y

Process Component

Discipline

Step
+governed Processes

0.*

Figure 2: SPEM main classes

A Work Product is a description of a piece of information or physical
entity produced or used by XhQ Activities of the software engineering process.
Examples of Work Products include models, plans, code, executables,
documents, databases, and so on.

A Work Definition is a Model Element describing the execution, the
operations performed, and the transformations enacted on the Work Products
by the Process Roles. Activity, Iteration, Phase, and Lifecycle are kinds of
Work Definition. Any Work Definition can be associated with Preconditions
and with Goals. They are both Constraints, expressed in terms of the states

Software Process Modelling 35

of the Work Products that are Activity Parameters to this Work Definition.
The Precondition defines what Work Products are needed and in which state
they must be to allow the work definition to start. Activities are the main
element of work. A Step is an atomic and fine-grained Model Element used
to decompose Activities. Activities are partially ordered sets of Steps. The
Life Cycle associated to a Process is a Work Definition containing all the
work to be done in a software engineering process. This Lifecycle can be
decomposed into Phases and/or Iterations. A Phase is a high-level work
definition, bounded by a milestone that can be expressed in terms of Goals:
which Work Products and in which state they must be completed. An
Iteration is a large-grained Work Definition that represents a set of Work
Definitions focusing on a portion of the Process that results in a release
(internal or external).

A Process Performer is a Model Element describing the owner of Work
Definitions. Process Performer is used for work definitions that cannot be
associated with individual Process Roles, such as a Lifecycle or a Phase. A
Process Role describes the responsibilities and competencies of an
individual carrying out Activities within a Process, and responsible for
certain Work Products.

Process packages allow any arbitrary (and overlapping) groupings of
process Definition Elements. A Process Component is a package that has
some internal consistency, and that is used for structuring a large Process. A
Process is a complete description of a software engineering process, in term
of Process Performers, Process Roles, Work Definitions, Work Products, and
associated Guidance. A Discipline is a Process Package organized from the
perspective of one of the software engineering disciplines: configuration
management, analysis and design, test, and so forth.

Being a UML Profile, the SPEM benefits of UML diagrams to present
different perspectives of a software process model: in particular, class
diagram, package diagram, activity diagram and use case diagram. The
SPEM notation suggests alternate representations for most frequently used
concrete classes of the meta-model: these icons are depicted in Figure 3.

ID Activity

Document
(Work Product
specialization)

Guidance

'̂ rî t

m

UML model
(Work Product
Specialization)

l_J

Process

Process Package
(Package

specialization)

Process Performer

Process Role

-L.. Work Definition

Work Product

Figure 3: SPEM icons

36 Open Source Software Development Process Modeling

SPEM standard aims at accommodating a large range of existing and
described software development processes, and not excluding them by
having too many features or constraints [11].

4. OSSDP MODELING

4.1 The definitional level

Our first highly abstract model is shown in Figure 4. The whole OSSDP
is described as a single SPEM Process Package with two Disciplines:
'Software development processes' and 'Community processes'. This
prescriptive model indicates that a fully-fledged OSSDP requires the
implication of a wide and organized community of distributed volunteer
contributors.

F/OSSD process

«discipline» «cliscipline»
Software development Community

processes processes

Figure 4: The definitional model

Most OSS projects are actually designed and developed by individuals,
not communities: 57% have one or two developers [22] (34% according to
[23]), and only 15% of them have more than 10 developers [22] (19%
according to [23]). In the first category, these very small OSS projects are
directed by a single 'lead developer' - usually the software's original author
- who assumes all the responsibilities and interacts with a small community
of end users.

Our model focuses on the latter category, roughly corresponding to the
'team work, external patches' scenario of [20], and which includes the most
successful OSS projects.

For some authors, small OSS projects are projects still in infancy, and
large projects are mature ones [20]. For instance, Stephano Mazzocchi's
'Stellar Model' [24] compares these stages and lifecycles to the ones of stars
and gravitational systems in general: expansion, fragmentation, contraction.
In our model, we are describing mature OSS projects.

Software Process Modelling

4.2 The generic level

37

Our second level defines a generic model of OSSDP, resulting from a
synthesis of many studies that report on OSS projects, and a survey of a
number of OSS Web portals. It is divided in two parts: the global view and
the use case view.

4.2.1 The global view

Each Discipline of the definitional level is first described as a set of
Model Elements: Process Roles with the Work Definitions they perform
(Activities or complex Work Definitions), Work Products (Documents) and
Guidance entities mainly describing tool usage (see Figures 5 and 6).

m Software development

processes

Yy, Download a
'-53 release

y -^ End use

^ . Contribute to

• •
Code Bug & issue

repository repositor/

• B

A>, Develop
• ^ - code

j-y^ Manage the
"Cr-v, release

"' process

^
*

•-£>

V"̂

r>

Committer

Review code

Commit code
in the code
repository

Choose new
committers

—̂v. Manage the
'̂ "-̂ '' project code

repository

I I .) Create a build

^'") Manage release
accessibility

Development Bug & issue Communication
& test tools management tool tools

Configuration Project web
management tool site

Figure 5: The Software Development Discipline

JjWj Community processes

MJM steering committee
^^ir\ member

^h^^ Project steering

Yy-, Create new

••11) (sub) projects

Y}^ Manage existing
•tj projects

L j L i Web team

V^TS' member

""r^^ Manage the
^ web portal

L J L i Foundation
\ ^ \ member

v-v Manage the
^—^ foundatbn

• • [ko
Community Community
documents message ^ ^ ^ P ° ^ '

archives

Figure 6: The Community Development Discipline

38 Open Source Software Development Process Modeling

Process Roles reflect the different levels of participation which exist in all
OSS projects. They "simply reflect a natural gradient of interest, competence
and commitment" (E. Raymond, cited in [8]).

Our model can abstract different concrete development organizations. For
instance, in projects with a closed 'inner circle', all Developers are also
Committers who are granted write access rights to the project code
repository. In some projects, the Steering Committee is an elected governing
board (e.g. Apache Group), while other projects have a single project owner
(or 'benevolent-dictator' [25]). When the number of participants grows,
secondary leaders emerge. Rather than project owners, they normally act as
managers (e.g., release managers) or maintainers (e.g., module or
infrastructure maintainers). More generally, leaders are also Developers
which is a radical difference from traditional development models. Most
projects operate as meritocraties [8]: the more someone participates, the
more merit or trust they earn from their peers, and the more they are allowed
to do. When the size of the software becomes too large, new functionalities
are added by means of ancillary (sub) projects. By this way, development
teams are kept small so that coordination can be handled by simple and often
implicit mechanisms.

Our model also emphasizes that tool mediation is the norm for OSS
projects: all policies such as authentication or regulation of commit
privileges are enforced by the tools on the project server. Most tools are
open source software and similar across projects, lowering the entry barrier
for participation. CVS and Subversion (version management), Bugzilla and
GNATS (bug and issue tracking), Hypermail (mailbox to HTML
transformer) are some examples of popular tools in open source
communities. Communication is predominantly asynchronous through
private mail and public or semi public mailing lists.

4.2.2 The use case view

The complex Work Definitions of both Disciplines are refined with
SPEM use case diagrams which in turn recursively define Activities or
simpler Work Definitions. Use cases allow to specify that several Process
Roles are collaborating within a complex Work Definition. These graphical
descriptions are easy to understand and can be further clarified with SPEM
External Descriptions.

Figure 7 shows the User-oriented use case diagrams refining 'Download
a release' and 'Contribute to the project' Work Definitions. These diagrams
emphasize the fact that the most important participants in OSSDP are the
people who use the software. Users contribute to the project by providing
feedback to developers in the form of bug reports and feature suggestions,

Software Process Modelling 39

and by participating in various issue discussions. Peer review is implicit in
OSS projects: source code is available to every user, and technical
communication is conducted in public. Most developers start out as users
and therefore guide their development efforts from the user's perspective.

Download a release Contribute to the project

Check the portal for
last release info

Download the release

Install the release

Communicate about requirements
and problems

«perform» send a bug report

Send a feature request

Figure 7: The User-oriented use cases

In general, OSS projects have a small, elite team of capable developers,
all of whom are granted write access to the source code repository
('Committers'). This core group creates the vast majority of new
functionality. A much larger group mainly provides bug fixes
('Developers'). Small increments (bug fix or enhancement) and rapid
iteration typify all OSS projects. Figure 8 shows the Developer and
Committer-oriented use case diagrams refining 'Develop code', 'Test code',
'Review code', and 'Other contributions' Work Definitions.

As we can see in Figures 7 and 8, there is no formal requirements
process: requirements are determined implicitly, as whatever the developers
actually build. Since developers are also end users and domain experts, they
should understand the requirements in a deep way.

Design activities are also missing from Figure 8. Design takes place at
the very beginning of the project when an early version of the product is
produced by an individual or a small closed group (see the 'Provide Initial
Code' Activity in Figure 10). This early version is sometimes built from
scratch, or more often, it reuses and extends an existing product. For
instance, Apache was based on the NSCA HTTPD server and Mozilla was
derived from the Netscape Communicator code base.

In OSS projects, there are no distinct phases: participants work
concurrently on whatever task (code, test, discuss, etc.) they find interesting.

40 Open Source Software Development Process Modeling

A good modular design of the product under construction makes such
division of labor and parallelism easier.

Yy-j Develop code
••-c>

Check-out source code files
& download

other contributions

Communicate about requirements,
problems and design issues

Send a feature request

Make a decision (e.g vote)

Write documentation

Mentor other participant

^~ry^ Test code

Download a

development build

Analyze test results

Send a bug/issue
report

" • " r ; ^ Review code

Download source code files

Perform review

Evaluate code:
accept/reject (e g vote)

Figure 8: The Developer and Committer-oriented use cases

To synchronize change, at some point, all important changes are merged
into a new release. Developers must contribute their fmalized code for the
new release. Release cycles overlap, with release i+i development starting in
parallel with release i reviewing and debugging. At the highest level of
parallelism, some OSS projects also maintain parallel code branches: one for
ongoing development and the other for stability and widespread use. Linux

Software Process Modelling 41

is a well known example of this approach, where the middle number of the
version identifier characterizes the release: odd numbers are for development
kernels and even numbers for stable ones. Figure 9 depicts the Manager-
oriented use cases related to the release management process.

Manage the release process (1)

Define release authcDrlty

Manager

2 - h Manage the release process (2)

Figure 9: The Manager-oriented use cases

Most activities at the community level (see Figure 10) are oriented for
making easier participation and communication, such as Web portal
management.

Open source development is much more informal than usual software
engineering projects: there are typically no plans or schedules. Some projects
have a brief vision summary and a development roadmap, produced by the
Steering Committee Members (see Figure 10) and describing for instance the
milestone schedule for the next year (in the Mozilla project). But, as
participants are volunteers there is no real commitment to deliver something
within a fixed timeframe.

4.2.3 Discussion

Our prescriptive model is consistent with Scacchi's generic OSSDP
model [26] (Figure 11) or Gilliam's model [27] (Figure 12). It has a larger
scope and encompasses all the basic aspects of software development, in
terms of Roles, Tools, Documents, and Activities. In a different way,
Scacchi and Gilliam models emphasize the cyclic nature of the overall
process and the central role of experience sharing. Our model can also be
compared with textual descriptive process models or frameworks, such as [8]
and [28]. Unlike all these informal descriptions, our model can be refined
until it provides a precise and description of specific existing OSSDPs,

42 Open Source Software Development Process Modeling

amenable to systematic analysis, comparison, and re-use. This point will be
discussed and exemplified in the next sections.

* ;

^^-^ Project steering Create new (sub) projects

Provide initial code

«perform» /)

Define policies

Propagate information

Choose new committee
members

Define license

Announce project

Define the project roadmap
and vision

Manage existing projects ^-)":) Manage the web portal

Oversight tJie project

Resolve conflicts

Call for participation

«perform»

Select community tools

•i:>
Create/register the portal

Update the portal content

Figure 10: Community-oriented use cases

Download and
1 Install

1 r

End-use

1

Manage
Configuration

i

1

L

f
Communicate

Experience
L

Develop OSS
Code

' ^ ' - - ' s ^

f

1 Read. Analyze and
1 Redesign

1

L

r
Assert

Requirements-
Design

\ ^

Figure 11: Scacchi's generic OSSDP model

Software Process Modelling 43

Project management
- makes initial release available on the internet

Development team-
- find bugs,
- add features,
- contribute fixes.

Project management:
- incorporate best features and fixes,
- distribute new official releases.

via mailing
Users/debuggers:
- find bugs,
- add features,
- contribute fixes

Project management
- incorporate best features and fixes,
- distribute new official releases.

Figure 12: Gilliam's model of OSSDP

Eric Raymond principles ([29]) stay at a more abstract level, but many of
them have a direct counterpart in terms of the process model:

- every good work of software starts by scratching a developer's
personal itch,

- good programmers know what to write; great ones know what to
rewrite (and reuse),

- if you have the right attitude (i.e. code sharing), interesting problems
will find you,

- treating your users as co-developers is your least-hassle route to rapid
code improvement and effective debugging,

- release early; release often; and listen to yours customers,
- given a large enough beta-tester and co-developer base, almost every

problem will be characterized quickly and the fix obvious to
someone,

- if you treat your beta-testers as if they are your most valuable
resource, they will respond by becoming your most valuable resource,

- the next best thing to having good ideas is recognizing good ideas
from your users; sometimes the latter is better,

- perfection (in design) is achieved not when there is nothing to add,
but rather when there is nothing more to take away,

- to solve an interesting problem, start by finding a problem that is
interesting to you,
provided the development coordinator has a medium at least as good
as the Internet, and knows how to lead without coercion, many heads
are inevitably better than one.

44 Open Source Software Development Process Modeling

4.3 The specific level

At this level, our model describes the specific features discovered by
analyzing the project shared information spaces on the Web. Each OSS
project defines its own Process Roles, Documents, Guidance, and more or
less detailed procedural behaviors that we translate into SPEM activity
diagrams. In the next two subsections we exemplify the approach with the
release management process of the NetBeans IDE project and the Apache
HTTP Server project. We have chosen these projects because of several
reasons: their rich information space, the availability of many studies that
report on them ([30, 4, 10, 31, 32]), their release management process, since
it reflects much of the underlying philosophy of OSS projects [33].

4.3.1 The NetBeans IDE release management process

In a first step, we specialize the concepts of the generic process model.
Figure 13 exemplifies some specializations of the generic Process Roles and
Documents entities.

*

*

t

Contributor
(= Developer)

Developer
(= Committer)

Module
Malntainer

t
*

Manager

Release
Manager

*

t
*

Infrastructure
Malntainer

CVS
Manager

Release Bug
schedule statistics

Figure 13: Generic concept specializations

In NetBeans, Contributors do not have write-access to the source tree
managed by CVS (Concurrent Versions System). Committers are called
Developers, and have CVS write-access for some individual modules. Each
module has one Module Malntainer who has check-in permissions (for that
module or global), and who manages a group of Developers. All Managers
and Maintainers are also Contributors. A number of project Documents play
a central role for coordinating the participants during the release process.

The informal description of the release process found on the Web portal
is a mail posted by the current Release Manager to the developers mailing
list (nbdev). The description of the process may slightly evolve from one
release to another. We give below an excerpt of two successive versions of
that informal description (Figures 14 and 15).

Software Process Modelling 45

NETBEANS RELEASE PROCESS - PROPOSAL [NB 3.1 nbdev mailing list 20/9/2000]

* When we want to make a new release of NetBeans IDE some volunteer will be chosen to be a
release manager (RM) The RM's role is to coordinate all the release efforts

* module owners will agree upon a code freeze date. The RM will announce this date on
nbdev.

* developers are expected to finish their work on new features before the code freeze date

* when the code freeze happens, a new branch is made off Vr\e CVS trunk, the convention is to
name the branch 'releaseXY' where X.Y is the version number of the new release

* branch neleaseXY will be built nightly and tested by developers. Bugs will be filed in Bugzilla.
If there are no Blocker and Critical bugs for five days, we can declare the release has
reached the beta stage. README, INSTALL, release notes, list of changes will be
completed. Announcement will be posted on nbannounce and nbusers. Users are
welcome to download the software, and beta test it

* users will file found bugs in Bugzilla, developers will (try to) fix them. The release becomes
stable when there is no Blocker, Critical, Major bugs for at least 10 days.

* duhng that process the RM will post the bug statistics daily on nbdev, to keep all parties
informed

* when the release becomes stabled, zip, tarball will be created and put on website. The final
download, install test will be done. Wait for one day and an official announcement will be
posted.

* parties will be thrown at different places around the globe

Figure 14: NetBeans release process description for version 3.1

NetBeans Release Process [NB 32 nbdev mailing list 11/2/2001]

* we do release once per three months, it means four releases each year. This is trie goal.
* although the general schedule is one release per three montlns, the exact dates must be set for
each release
*the release schedule consists of the feature freeze, the first and second release candidate and
the final release.
* feature fi-eeze is the date after which only code changes due to bug fixes are allowed to be
checked in CVS
* after feature freeze Ul changes should be minimal, i.e feature freeze implies Ul freeze Any Ul
changes must be communicated in advance and should be earned out only because of bug fixes
* at the feature freeze a side branch in CVS will be created for fixing bugs and finalizing
documentations. The naming convention for a CVS branch is releaseXV where X.Y is the version
number of the release
* duhng the stabilization phase the binanes are marked as NB X.Y beta, daily built is made
available for download and all users are invited to test the software. Developers are expected to
promptly respond to bug reports. Bug reports are of course preferably filed in the bug database,
but the developers should also monitorthe nbusers mailing list and reply to users' feedbacks
posted tJiere.
* at the end of trie stabilization phase a series of builds will be declared as release candidates. If
no serious issues are ftiundthe last release candidate automatically becomes the final release.
There must be at least one week between the last release candidate and the final release.
* after the first release candidate is made all code changes must be negotiated in advance by
posting requests on nbdev
* duhng the stabilization phase the README and release notes are being put together. The first
drafts of these two critical documents should rather be made earlier than later.

Figure 15: NetBeans release process description for version 3.2

On the basis of these textual descriptions, we have devised a multi
layered SPEM activity diagram. At- the first level, Figure 16 specifies the
sequence of all Activities of the generic use case model that was depicted by

46 Open Source Software Development Process Modeling

Figure 9. Some Activities are then decomposed into smaller Steps. 'Define
release requirements', 'Define release authority', 'Define timeline', and 'Pre
release testing' Activities are taken below as examples of such refinements
(see Figures 18, 20, 22, 23). For each refined Step, we give excerpts of
documents, mainly emails from the developers mailing list, as their rationale
or illustration. At this level, we are starting to devise process model
fragments from process enactment instances discovered in the project
information space, instead of formalizing process descriptions written by
core participants as previously. The reliability of these model fragments is
more questionable but> can be strengthened by the frequency of the observed
pattern in the project history. Some researchers propose to automatically
extract these model fragments from the artifacts (source code files, messages
in public discussion forums, Web pages), the artifact update events (version
release announcements, Web page updates, message postings), and the work
contexts (roadmap for software version releases, Web site architecture,
communications systems in use) [34, 35].

•̂ •"̂ _̂_. Release management process

Release Manager

Define
release authority

^^--''' Patch (new
- ' ' " ' ' features)

Development phase
with milestones

'^(new features integration
to the development build)

[̂ [feature freeze date]

> Pre-release
testing ggta stage announce

Release approval

Create final release information

Install release and information on
/. / the project site

Announce tine release

Figure 16: NetBeans release management process

Software Process Modelling 47

Figure 17 shows a release proposal (a mail from nbdev mailing list) and
Figure 18 explains how it has been constructed.

[NB3.4 nbdev mailing list 13/1/2002] Subject: [nbdev] NB 3.4

NetBeans 3 4 Draft Release Proposal

Planned FCS- August 2002

High level theme,

Usability, productivity, and runtime performance

Major proposed content

Improve User Interface and Usability

The primary focus being improved workflow and better integration of existing functionality

Full support for J2SE 1 4

This includes both running on 1 4 as the phmary JDK, as well as support for new features in

1 4 (e g asserts, new swing components)

Dependency Manager as part of the new Projects infrastructure

Provide base level support of (Projects) and MDR) as needed to support the other goals (e g

the Dependency Manager)

If you would like to make a contribution to NB 3 4 or you have suggestions particularly ones that fit
the themes mentioned above, please let everyone know

Figure 17: A release proposal part of 'Define release requirements' activity

Yy Define release requirements

Previous Release Manager

\ Solicit for module
Inclusion

Roadmap collect answers

Project
vision

Review Roadmap
and Project vision

Draft the release
proposal / /^

Create formal
Release proposals

Formal release proposal

wMm Module maintalner

Mail on developer mailing list

Private Mail

Mall on developer mailing list

Build a
—̂ ^̂ ^\ detailed

Z / plan

Provide feedback

*
Developer or
Contributor

Figure 18: 'Define release requirements' refined activity diagram

48 Open Source Software Development Process Modeling

The 'Define release authority' Activity includes a public call for the
designation of a new Release Manager (see the mails in Figure 19).

Subject WANTED Release Manager for NetBeans IDE 3 2 [NB3.2. nbdev mailing list 20/2/2001]
Hi everybody.

March 9, 2001, the feature freeze day for NB 3 2 Is coming We need someone to act as the release
manager for this release Anyone interested in contributing his/her time, energy and nerves ?

The responsibilities of the release manager are summed up in my recent post on nbdev.

[NB3.2. nbdev mailing list 22/2/2D01]

Hi.

It seems that nobody is going to raise the hand So. I'm going to do so However if someone would like
to change his mind and be the release manager I wouldn't mind.

[NB32. nbdev mailing list 23/2/2001]

Petr, Jesse, it's great that you voluntEer. I am completely happy with Petr being the NB 3.2 release
manager and Jesse dealing with CVS things Community. I think we can close this soon If anybody
wants to object the election of Peir Hrebejk to be the NB 3 2 release manager, please post your
opinions now Otherwise on Monday I would consider this done and announce this fact to the world

[NB3.2. nbdev mailing list 26/2/2001]

Subject. ANN Petr Hrebejk is the release manager for NetBeans IDE 3 2

NetBeans developers have elected Petr Hrebejk to be the release manager for the upcoming release of
the IDE. Jesse Glick is volunteering to help Petr with CVS technicalities

Figure 19: Mails related to the 'Define release authority' activity

The process for defining the release authority can slightly change from
one iteration to the next. Figure 20 defines a kind of 'standard practice' with
candidacy announcements and consensus establishment.

Y) Define release authority

Previous Release Manager

Solicitation for
Release Manager i

candidacy
announcemeni

[new candidacy]

Establish
consensus

Announce new
release manager

Mail on developer
mailing list

'x; ŝ Send
_^.^-- '> ") candidacy

Mail on developer
mailing list

-C'), Send
opinion

Mail on developer
mailing list

CVS Manager

Set up CVS
permissions for

release manager

Figure 20: 'Define release autliority' refined activity diagram

Software Process Modelling 49

Projects regularly enforce feature freeze (and/or code freeze). During
NetBeans feature freeze, no new functionality can be added to the code base,
however bug fixes are permitted. The 'Define timeline' Activity (Figure 22)
produces a release schedule specifying all milestones (Figure 21).

Subject; (nbdev) Proposed 3.4 Schedule [NB3.4. nbdev mailing list 5/3/2002]

Here's a proposal for the 3 4 Schedule
During the development phase we will continue with weekly Q-bullds process
We propose to have milestones evety three weeks so we can check progress and catch potential
problems earlier. The QA group has volunteered to do extra testing of the milestone builds. The
last milestone is the feature freeze - all features must be Integrated by ttiis date.
We propose to enter High Resistance mode two weeks before the first release candidate.
We hope that this process will ensure that RC1 will be a true Release Candidate. .Additional
release candidates will be produced as needed

Development Phase
Apr 03 Milestone 1
Apr 24 Milestone 2
May 15 Milestone 3, Feature Freeze

Beta
Jun 05 Beta 1
Jun 26 Beta 2
Jul 07 Enter High Resistance

Release Candidate(s)
Jul 24 RC 1

<Additional RCs as needed>
Aug 21 FCS

A milestone has been met when all of its tasks have been implemented and tested, accessibility
and II8N issues have been completed, and unit tests have been written.
Comments?
Evan

Figure 21: A release schedule proposal part of 'Define timeline' activity

*

Yy Define timeline

Release Manager ^^^^^
h 1 •']

Roadmap """-̂ .̂

!

Announce dates \

i
^^-'^" Project vision

\ Review Roadmap and Project

y' vision

\ Set feature freeze and
/ release dates

Release schedule

Figure 22: 'Define timeline' refined activity diagram

The 'Pre-release testing' Step of Figure 16, which constitutes the core of
the release process, is refined twice. The first refinement (Figure 23) shows
the 'stabilization phase' followed by a sequence of release candidates (RC).

50 Open Source Software Development Process Modeling

The 'high resistance mode' ensures that lead programmers review code
changes. Every RC build is created when there is no known critical bug. If
any critical bug is discovered within one week after RC is built, the bug has
to be fixed and a new RC is created. If no critical bug is discovered within
one week in RC, this build will become the final (stable) release.

D
•JP" Release Manage

Pre-release testing

\ \ stabilization phase
/ / (test beta releases +high resistance mode)

\ \ Test release candidate 1

T [no serious issue]

Figure 23: 'Pre-release testing' first refinement

The second refinement (Figure 24) gives more details about the
'Stabilization phase' during which Developers and Contributors propose bug
fixes to the beta release which is daily built.

wMm Develop
^(fP^ or Contrib

nbusers mailing list

•x ,̂-

Y2> stabilization phase

er
utor

-1
\ Bug/issue

Read bug \ \ report
or issue / / (Bugzilla)
report 1

Write V^^N
, bug fix / y -̂-.̂ ^

MSM Contributor
^(P^ or Module maintainer

Bug fix

Release Manager
and CVS Manager

Figure 24: 'Pre-release testing' second refinement

In addition, several Activities implemented by Sun's Quality Assurance
team, responsible for the commercial product SunONE Studio which extends

Software Process Modelling 51

NetBeans, come with the open source release process such as weekly Q-
builds, for ensuring an assured level of quality, and extra testing of the
milestone builds during the stabilization phase. This close relationship with a
'commercial process' has no deep impact on NetBeans OSSDP.

43.2 The Apache Server release management process

On the Apache Server Web portal a document informally describes the
release process (see Figure 25).

This document describes the general release policies used by the Apache HTTP Server Project. As
described herein, this policy is not set in stone and may be adjusted by the Release Manager

Who can make a release? Technically, any one can make a release of the source code due to the
Apache Software License. However, only members of the Apache HTTP Servier Project
(committers) to project can make a release designated with Apache Other people must call their
release something other than "Apache" unless they obtain written permission from the Apache
Software Foundation

Who is in charge of a release? The release is coordinated by the Release Manager (hereafter.
abbreviated as RM) Since this job requires coordination of the development community (and
access to CVS), only committers to the project can be RM. However, there is no set RM. Any
committer may perform a release at anytime In orderto facilitate communication, it is deemed
nice to alert the community with your planned release schedule before executing the release.

Who may make a good candidate for RM? Someone with lots of time to kill Being an RM is a very
important job in our community because it takes a fair amount of time to produce a stable
release

When do I know if it is a good time to release? It is our convention to indicate showstoppers in the
STATUS file in the repository A showstopper entry does not automatically imply that a release
can not be made As the RM has final authority on what makes it into a release, they can choose
to ignore the entries. An item being denoted as a showstopper indicates that the group has come
to a consensus that no further releases can be made until the entry is resolved These items may
be bugs, outstanding vetos that have not yet been resolved, or enhancements that must make it
into the release

What power does the RM yield? Regarding what makes it into a release, the RM is the unquestioned
authority No one can contest what makes it into the release

How can an RM be confident in a release? The RM may perform sanity checks on release
candidates. One highly recommended suggestion is to run the httpd-test suite against the
candidate The release candidate should pass all of the relevant tests before making it official
Another good idea is to coordinate running a candidate on apache.org for a period of time. This
will require coordination with the current maintainers of apache org's httpd instance In the past.
the group has liked to see approximately 48-72 hours of usage in production to certify that the
release is functional in the real world.

What can I call this release? At this point, the release is an alpha The Apache HTTP Sen/er
Project has three classifications for its releases" Alpha Beta General Availability (GA) Alpha
indicates that the release is not meant for mainstream usage or may have serious problems
that prohibits its use. When a release is initially created, it automatically becomes alpha
quality. Beta indicates that at least three committers have voted positively for beta status
and there were more positive than negative votes for beta designation. This indicates that it
is expected to compile and perform basic tasks However, there may be problems with this
release tfiat prohibit its widespread adoption. General Availability (GA) indicates that at least
three committers have voted positively for GA status and that there were more positive than
negative votes for GA designation. This release is recommended for production usage.

Who can vote? Non-committers may cast a vote for a release's quality In fact, this is extremely
encouraged as it provides muctvneeded feedback to the community about the release's
quality However, only binding votes casted by committers counttowards the designation.
Note that no one may veto a release

How do we make it public? Once the release has reached the highest-available designation (as
deemed by the RM). the release can be moved to the httpd distribution directory on
apache.org Approximately 24 to 48 hours after the files have been moved, a public
announcement can be made We wait this pehod so that the mirrors can receive the new
release before the announcement An email can then be sentto the announcements lists
(announce@apache.org. announce@httpd apache org) Drafts of the announcement are
usually posted on the development list before sending ITie announcement to let the
community clarify any issues that we feel should be addressed in the announcement

Should the announcement wait for binaries? In short, no The only files that are required for a
public release are the source tarballs (tar Z. tar gz) Volunteers can provide the Win32
source distribution and binaries, and other esoteric binaries

Figure 25: Informal release process description

52 Open Source Software Development Process Modeling

Some examples of specialization of the generic Process Roles are shown
in Figure 26. All Apache projects (HTTP Server, Jakarta, XML, etc.) are
managed using a collaborative, consensus-based process. Apache is a
meritocracy where the rights and responsibilities follow from the skills and
contributions of participants. The Project Management Committee (PMC) is
a group of Committers who take responsibility for the long-term direction of
the projects in their area. Members of the PMC are self-selected Committers.
There is a single PMC for each parent project which is commissioned
directly by the Apache Software Foundation Board of Directors. The Board
of Directors ultimately has the final decision making power on any project.
They delegate this responsibility to the PMC of each project. Although the
Release Manager has the ultimate say in what goes into the final release, the
PMC can make suggestions. The PMC is in turn responsible for many sub-
projects, each of which with its own group of Committers.

Developer

committer " X " ^ ' ^ " " " S " '

Memberof the Program '
Management Committee ^ J k i "v l J L Release
(= steering committee) ^ C ^ "^^ Manager

Figure 26: Sortie Apache Server process roles

The high level activity diagram that can be devised from the informal
process description is similar to the diagram drawn for the NetBeans process
(see Figure 16). Differences stay at a more detailed level. For instance, the
'Define Release authority' Activity]\xsX includes the self designation from a
Member of the PMC who accepts to act as the Release Manager, instead of
the public call for candidates in the NetBeans process. Other specific
Activities are described with more details below.

It should be noted that all important information about the release (its
definition, timeline, status, changes, expected new features, and so on) is
recorded within the repository STATUS file (see Figure 27). The STATUS
file defines in particular 'showstoppers', which are issues that require a fix
before the next release. They are defined by 'lazy consensus': a showstopper
is valid if no Committer disputes the issue by sending a negative vote or a
veto vote.

Software Process Modelling 53

Each of the Apache Project's active source code repositories contain a file called "STATUS" which is used
to keep track of the agenda and plans for work within that repository. The active STATUS files are
automatically posted to the mailing list each week
Many issues will be encountered by the project, each resulting in zero or more proposed action items
Action items must be raised on the mailing list and added to the relevant STATUS file All action items
may be voted on, but not all of them will require a formal vote. Types of Action Items :
- long Term Plans : ane simply announcements that group members are working on particular issues
related to the Apache software These are not voted on
- short Term Plans are announcements that a developer Is working on a particular set of documentation
or code files, with the implication that other developers should avoid them or try to coordinate their
changes. This is a good way to proactively avoid conflict and possible duplication of work.
- release Plan is used to keep all the developers aware of when a release is desired, who will be the
release manager, when the repository will be frozen in order to create the release, and assortEd other
trivia to keep us from thpping over ourselves duhng the final moments Lazy majority decides each issue
in the release plan.
- release Testing after a new release is built, colloquially termed a tarball, it must be tested before being
released to the public. Majority approval is required before the tarball can be publically released.
- showstoppers • ane issues that require a fix be in place before the next public release. They are listed in
the STATUS file in order to focus special attention on the problem. An Issue becomes a showstopper
when it is listed as such in STATUS and remains so by lazy consensus
-product Changes : changes to the Apache products, including code and documentation, will appear as
action items under several categohes corresponding to the change status'

- concept/plan ; an idea or plan for a change. These are usually only listed in STATUS when the
change is substantial, significantly impacts the API. or is likely to be controversial. Votes are being
requested early so as to uncover conflicts before too much work is done.
- proposed patch , a specific set of changes to the current product in the form of input to the patch
command (a diff output)
- committed change; a one-line summary of a change that has been committed to the repository
since the last public release.

Figure 27; Description of the STATUS file

This organization makes the 'Define Release requirements' and 'Define
timeline' process fragments quite simple with a simple update of the
STATUS file (see Figure 28).

Yy Define release requirements

• A n Program Management
^ ^ Committee member

Define the 'X \
project 2. /""'——-^. J i

roadmap "'*%
and vision "^

Apache project plan
•1̂

*

^̂-̂ .̂

Release Manager

^ . ' ' ' | M STATUS file
.--"^ '^^(showstoppers)

"X""
\ ^\, Select new
/ ^ / features

* 1 M | STATUS file
1^1 (release plan)

* Release Manager

YJ Define timeline

, ' ' ' ' '] • STATUS file

\ "̂ Plan the release

^ ^ " ^ ^ - J m STATUS file (release plan)

Figure 28: 'Define release requirements' and 'Define timeline' refinements

54 Open Source Software Development Process Modeling

'Pre release testing', which constitutes the core of the release process, is
different from its NetBeans counterpart due to the democratic and distributed
style of management of the Apache project, and to different quality
insurance procedures.

First, transitions from the alpha stage (i.e., a release which may have
serious problems that prohibits its use) to the beta stage (i.e., a release
expected to compile and to perform basic tasks) and from the beta stage to
the final stage (i.e., a release recommended for production usage) are
collective decisions taken after a vote (see Figure 29) with a majority
consensus rule: at least three Committers should have voted positively for
the new status and the number of positive votes for that designation should
exceed the number of negative votes.

Pre-release testing as a release candidate

Release Manager

Test the release
(alpha release)

Organize vote ttir
beta status

[accepted]

Test the release
(beta release)

Organize vote for
general availability

status

' [accepted]

Committer

•> Vote

•o

Figure 29: Pre-release testing

Secondly, to ensure a high level of quality, different prescriptions should
be satisfied:

- the regression test suite should be run against the release candidate;
Figure 30 shows that new test cases are expected from Committers
each time they fix a bug,

- each release candidate should be used in production (i.e., for running
the main apache.org Web server) for a given period of two or three
days (see Figure 31).

Software Process Modelling 55

> Test the release

mfm Release Manager

Announce tine
release candidate

Announcement

Bug or issue report

, 3U^ Read bug
\ 'N) or issue
/ report

\^ Write
/ bug fix

, Test bug
fix

V—•'—s Commit
> } code to

Add new
test cases

/ (optional)

Figure 30: First refinement of pre-release testing

>) Release declared stable

*
Release Manager

X
\ ~ \ Run
/-* / regression

1 test suite

\ \ Fix bugs

A,
T

-̂ ' \Use the release in
) ^ production

Z ,./(3paQ|̂ e ong web
i server)

) / Fix bugs

1

Figure 31: Second refinement of pre-release testing

According to the informal process description (see Figure 25), these
policies "are not set in stone and may be adjusted by the Release Manager"
under the circumstances. It is worth noting that no process-oriented
proposals or discussions can be found within recent Apache Server mailing

56 Open Source Software Development Process Modeling

Hst archives while many of them can be found within NetBeans archives:
debates about the Board election process, the Q-build process, the criteria
and process a module has to pass to be marked as stable, and so on.
Surprisingly, NetBeans process is more a collective construction than
Apache process, while NetBeans is a project supported by an industrial
software company. The reason could be the level of maturity of the process,
higher in Apache than in NetBeans. Another study of the Apache project
reports many process discussions during its early stages (in 1995) about the
vote and patch system, show stopper bugs and code freeze [10].

5. DISCUSSION

Three main goals and benefits can be attached to the modeling of
software processes [36], [37]: (1) process understanding and communication,
(2) process comparison, reuse, and improvement, (3) process enactment
support. We discuss these three aspects in the case of OSS development
modeling in general, and in the case of using SPEM in particular.

5.1 Process understanding and communication

OSSDPs can be described as a network of (largely social) processes
arranged in a highly dynamic topology [38]. Besides the release process that
we have studied in depth in the previous section, other process fragments
include testing, work coordination, critiquing, suggesting, tool-building, bug
triage, negotiation, evaluation, etc.

Generally, models of specific process fragments with ad hoc implicit
notations, such as the 'life cycle of changes' in FreeBSD project [39] (Figure
32), stay at a very abstract level. A detailed process fragment description
should at least specify the main relationships between people (roles),
products and activities.

Code

\ Pre-commit
test

Development
release

Parallel
debugging

Production
release

Figure 32: The life cycle of changes in FreeBSD project

Software Process Modelling SI

It has been partly done for different process fragments of the FreeBSD
project in a following paper [40] with a more precise notation including roles
and decision points (Figure 33).

Core team

Mentor

Recommending
Committer

Contributor f

Administrators

< ; ; ^ e ^ t ^ ^

Sends a |
Contribution J

. - ^ o t e on"-^,.^^^
recommen-

^-^a t ion , . . - - ' ' ^

yes

^commend5>

\yes

Introduce
Contributor

Submit
details

1
i

Create
account

Make first 1
commit

Figure 33: 'Adding a new Committer' process model fragment in FreeBSD
project

Many software process modeling formalisms are designed for describing
the relatively 'linear with feedback loops' structure of classical software
development processes. It is the case, for instance, of Petri net based
formalisms [41, 42]. At the opposite, SPEM allows to describe different
perspectives of a software process model through all basic UML diagrams.
In this chapter we used nested package diagrams for defining the main
Model Elements, use case diagrams for showing the relationship between
Process Roles and the main Work Defiinitions, and activity diagrams for
presenting the sequencing of Activities with their input and output Work
Products. We could also use Class diagrams for representing the structure,
decomposition, and dependencies of Work Products, and Statechart
diagrams for specifying the behavior of SPEM Model Elements, and
therefore all the remaining concepts of the SPEM meta model. For OSS
communities, which are basically communities of developers, UML
diagrams should be easier to understand and accept than any other process
modeling formalism and a valuable alternative to informal textual
descriptions. This could be the first step for promoting the use of software
process models in the OSS community for process understanding and
communication.

The main weakness of SPEM is its approach for modeling tools. Unlike
many other software process meta models (e.g. [43, 44]), tools are not first
class concepts. We have represented them within Disciplines by using the
more general Guidance concept, because one possible kind of guidance is
tool usage specification (called 'Tool Mentor'). This solution is not fully
satisfactory: no specific notation exists for specifying the relationships

58 Open Source Software Development Process Modeling

between tools and Work Definitions, Work Products and Process Roles. It
would be interesting to have more precise and systematic notations for
specifying how tools mediate the development process because it constitutes
a fundamental characteristics of all OSSDPs (see section 4.2.1).

5.2 Process comparison, reuse and improvement

OSSDPs mainly differ in their decision-making style, their coordination
style, and their quality insurance procedures. All these aspects can be
precisely documented through process modeling techniques, and the SPEM
approach in particular.

For instance, Apache adopts an approach to coordination well suited to
small projects. The server itself is kept small (77 kSLOC). Any functionality
beyond the basic server is added by means of ancillary projects that interact
with Apache only through Apache's well-defined interface. The coordination
is successfully handled by a small core team (10-15 persons) using primarily
implicit mechanisms: a knowledge of who has expertise in what area,
general communication about what is going on, and who is doing what and
when. There is no waiting for approvals, permission, and so forth. This
highly implicit coordination style is exemplified by Figure 30 concerning
bug fixing during the release process. The larger NetBeans project (758
kSLOC) includes more formal means of coordinating the work, such as
module owners (Module Maintainer Process Role) who approve and perform
changes to the modules. This more disciplined coordination style is
exemplified by Figure 24 for the same bug fixing activity.

By codifying OSSDPs as formal models, the OSS community could
share their 'best practices' as open source software process models [7].
Empirically, a process is good because people freely accept to follow it:
participants 'are voting with their feet' [10]. New projects could start with
such 'approved procedures' instead of reinventing everything through trial
and errors. The high modularity of the SPEM approach could favor reuse of
model fragments corresponding to loosely articulated sub process and
therefore incremental process reuse and improvement.

Our multi level approach allows to analyze if a given project complies
with our generic level and at which level of details it differs from other
projects. The use of a well defined meta model with a sufficient expressive
power is important. For instance, it is not easy to compare the release
engineering process model fragment of FreeBSD as depicted by Figure 34
[40] with the corresponding model fragments from the Apache and
NetBeans projects because many questions have no answer: who build the
release schedule? when? how? which activities can take place after the

Software Process Modelling 59

feature freeze and after the code freeze? how the release is stabilized? who is
in charge of the deployment? which tools are used?

Make release
schedule

i
Make
branch

Feature
freeze

Release
candidate

i_

Code
freeze

1

iterate

Stabilize
release

1
Release considered stable

i
1 Build
1 packages

Warn
mirrors

Publish
release

Figure 34: FreeBSD release engineering process model fragment

5.3 Process enactment support

Software process performers (developers, managers) can receive indirect
support through guidance information, which helps them to perform their
work, such as determining the current status of the process, the appropriate
next steps to be executed, the decision points and their meanings, etc.
Guidance is provided through manual or mechanical interpretation of
software process models simultaneously and synchronously with the actual
process performance [36]. Software process performers can also receive
direct support through enactable software process models which are
mechanically interpreted by process engines within process-aware tools, in
order to orchestrate the performance of the actual development and to
automate it as far as possible [36, 43].

Very few experiments aim at applying mechanical support to OSSDPs.
Jensen and Scacchi describe a prototype for enacting formal models written
in the PML language in order to simulate them [30]. Use of the GENESIS
platform, a process-aware toolkit for supporting distributed software
development, is discussed in the context of OSS projects [45]. The broader
idea of 'workflow support' is sometimes mentioned, for specific process
fragments [46], such as routing proposed changes by non Committers to
Committers, notifying all developers that have recently checked-in changes
to a group of code that its documentation has been updated, tracking and
communicating workflow progress to project leaders. It is worth noting that
the actual enactment of processes is not in the scope of SPEM [11].

Some OSS developers do not like the idea of specifying process models
"I am opposed to a long rule-book as that satisfies lawyer-tendencies, and is
counter to the technocentricity that the project so badly needs" (email

60 Open Source Software Development Process Modeling

reported in [40]). Process enactment support for development tasks would
certainly be rejected by most of the OSS developers. However, tasks that are
not development related, should be automated so that the Committers can do
what they do the best and enjoy the most: develop software [40].

6. CONCLUSION

Today, software engineering offers a spectrum of approaches with
process intensive methodologies such as the Capability Maturity Model [47]
at one extreme and lightweight methodologies such as open source or agile
methodologies [48] at the other. Lightweight methodologies emphasize the
fact that software development is fundamentally a human activity. Some
approaches which combine control with some flexibility, like Rational's
Unified Process [49] are positioned in the middle.

Open source development is not a silver bullet [50] but just an alternative
approach showing how the Internet can change the way software is
constructed, deployed, and evolved. Open source development 'offers useful
information about common problems as well as some possible solutions for
globally distributed product development' [8]. Process modeling gives a
great opportunity to analyze, compare, visualize, and transfer for reuse these
possible solutions.

This chapter defines a multi level modeling approach for describing in a
common framework both the generic characteristics of OSSDPs and the
special features of specific projects. The chapter contrasts NetBeans and
Apache release management processes, and discusses the strengths and
weaknesses of the approach and the SPEM notation. This work is a first step
towards the systematic description and analysis of OSSDPs. We aim at
characterizing different families of OSSDPs by showing that each family
share a larger set of common properties than those of the generic level.

It is tempting to suggest that closed source development and open source
development could be hybridized [51]. The general opinion recognizes the
interest of reusing some principles and solutions of OSSDP in other contexts
for developing specific software products, such as tools and platforms [51],
and more generally all applications faced by developers [3]. Our approach
could help such hybridization by providing a common framework for
analysis and discussion of all the processes by which a group of people can
produce high quality software with a cooperative style of development
departing from the traditional hierarchical and management driven style.

Software Process Modelling 61

REFERENCES

[I] An Introduction to Open Source Communities, E.E. Kim, Blue Oxen Associates, Technical
report, BOA-00007, 2003.

[2] Results from Software Engineering Research into Open Source Development Projects
Using Public Data, S. Koch, and G. Schneider, Diskussionspapiere zum Tatigkeitsfeld
Informationsverarbeitung und Informationswirtschaft, Hansen, H.,R., and Janko, W., 22,
Wirtschaftsuniversitat Wien, Austria, 2000.

[3] Reusing Open-Source Software and Practices: The Impact of Open-Source on Commercial
Vendors, A. W. Brown, and G. Booch, ICSR-7, LNCS 2319, Springer-Verlag, 2002, pp.
123-136.

[4] A Case Study of Open Source Software Development: The Apache Server, A. Mockus,
R.T. Fielding, and J. Herbsleb, 21st hitemational Conference on Software Engineering
(ICSE), Los Angeles, CA, 1999, pp. 263-272.

[5] Two case studies of open source software development: Apache and Mozilla, A. Mockus,
R.T. Fielding, and J. Herbsleb, ACM Transactions on Software Engineering and
Methodology, 11(3), ACM, 2002, pp. 309-346.

[6] An Overview of the Software Engineering Process and Tools in Mozilla Project, C.R. Reis,
and R. Pontin de Mattos Fortes, Workshop on OSS Development, Newcastle upon Tyne,
UK, 2002, pp. 162-182.

[7] Issues and Experiences in Modeling Open Source Software Development Processes, W.
Scacchi, 3rd Workshop on Open Source Software Engineering, ICSE'03, Portland, Oregon
2003, pp.121-126.

[8]^ Descriptive Process Model for Open-Source Software Development, Johnson, K.,
Master Thesis, Univ. Calgary, Alberta, 2001.

[9] The Cathedral & the Bazaar - Musings on Linux and Open Source by an Accidental
Revolutionary, E.S. Raymond, O'Reilly & Associates Inc., Sebastopol, 1999.

[10] The-User Developer Convergence: Innovation and Software Systems Development in the
Apache Project, Osterlie, T., Master Thesis, Norwegian Univ. of Science and Technology,
2003.

[II] Software Process Engineering Metamodel Specification, version 1.0, OMG Document
formal/02-11-14,2002.

[12] Unified Modeling Language Specification, version 7.5, OMG Document formal/2003-03-
01,2003.

[13] Free Software Foundation Web site, http://www.gnu.org.

62 Open Source Software Development Process Modeling

[14] The Free Software Definition (on line), Stallman, R.,
http://www.fsf.org/philosophy/free-sw.html, 1999.

[15] Open Source Initiative Web site, http://www.opensource.org.

[16] The Open Source Definition, Version 1.9 (on line), OSI, http://www.opensource.org,
2003.

[17] Netbeans Project Web site, http://www.netbeans.org.

[18] Eclipse Project Web site, http://www.eclipse.org.

[19] Software Development Practices in Open Software Development Communities: A
Comparative Case Study, W. Scacchi, First Workshop on Open Source Software
Engineering, ICSE'Ol, Toronto, Ontario, Canada, 2001.

[20] Characterizing the OSS process, A. Capiiuppi, P. Lago, and M. Morisio, 1st Workshop
on Open Source Software Engineering, ICSE'Ol, Toronto, Canada, 2001.

[21] Meta Object Facility Specification, version 1.4, OMG Document formal/02-04-03, 2003.

[22] Evidences in the evolution of OS projects through Change log Analyses, A. Capiiuppi, P.
Lago, and M. Morisio, 3rd Workshop on Open Source Software Engineering, ICSE'03,
Portland, Oregon 2003, pp. 19-24.

[23] Cave or Community? An Empirical Examination of 100 Mature Open Source Projects, S.
Krishnamurthy, First Monday, 7 (6), 2002.

[24] The stellar model of open source, Version 0.1 (on line), S. Mazzocchi, Java Apache
Project, http:/^ioinformatics.weizmann.ac.il/software/apache/java/framework/stellar.html,
1999.

[25] Homesteading the noosphere, Version 3.0 (on line), Raymond, E.S.,
http ://www. catb.org/~esr/writings/homesteading/, 2000.

[26] Open Source Software Development Processes, Version 2.5 (on line), W. Scacchi,
http://www.ics.uci.edu/~wscacchi/Software-Process/Open-Software-Process-Models/Open
-Source-Software-Development-Processes.ppt, 2002.

[27] Improving the Open Source Software Model with UML Case Tools, J.O. Gilliam, Linux
Gazette, 67, June 2001.

[28] A Framework for Open Source Projects, Rothfuss, G.J., Master Thesis, Department of
Information technology, University of Zurich, 2002.

[29] The Cathedral and the Bazaar, Version 3.0 (on line), Raymond, E.S.,
http ://www.catb.org/~esr/cathedral-bazaar/cathedral-bazaar/, 2000.

Software Process Modelling 63

[30] Simulating an Automated Approach to Discovery and Modeling of Open Source Software
Development Processes, C. Jensen, and W. Scacchi, ProSim'03 Workshop on Software
Process Simulation and Modeling, Portland, Oregon, 2003.

[31] Open Source Software Development Processes in the Apache Software Foundation (on
line), Ata, C , Gasca, V., Georgas, J., Lam, K., and Rousseau, M.,
http://www.ics.uci.edu/~michele/SP/fmal.doc, 2002.

[32] A First Look at the NetBeans Requirements and Release Process (on line), Oza, M.,
Nistor, E., Hu, S., Jensen, C , and Scacchi, W.,
http://www.ics.uci.edu/~cjensen/papers/FirstLookNetBeans/, 2002.

[33] Release Management Within Open Source Projects, J.R. Erenkrantz, 3rd Workshop on
Open Source Software Engineering, ICSE'03, Portland, Oregon 2003, pp. 51-56.

[34] Automating the Discovery and Modeling of Open Source Software Development
Processes, C. Jensen, and W. Scacchi, 3rd Workshop on Open Source Software
Engineering, ICSE'03, Portland, Oregon 2003, pp. 75-78.

[35] Distributed Collective Practices and Free/Open-Source Software Problem Management:
Perspectives and Methods, L. Gasser, and G. Ripoche, CITE'03, 2003, pp. 349-365.

[36] A Structured Conceptual and Terminological Framework for Software Process
Engineering, J. Lonchamp, Second Int. Conf On the Software Process (ICSP2), Berlin,
RFA, IEEE Computer Society Press, 1993, pp. 41-53.

[37] A field study of the software design process for large systems, B. Curtis, H. Krasner, and
N. Iscoe, Communications of the ACM 31(11), 1988, pp. 1268-1287.

[38] Understanding Continuous Design in F/OSS Projects, L. Gasser, G. Ripoche, W.
Scacchi, and B. Pennel, ICSSEA, Paris, France, 2003.

[39] Putting it all in the trunk: Incremental software development in the FreeBSD open
source project, N. Jorgensen, Information Systems Journal, 11, 2001, pp. 321-326.

[40] A Project Model for the FreeBSD Project, Saers, N., Master Thesis, University of Oslo,
2003.

[41] SPADE: An Environment for Software Process Analysis, Design, and Enactment, In
Software Process Modelling and Technology, chapter 9, Research Studies Press, 1994, pp.
223-247.

[42] Software process analysis based on FUNSOFT nets, W. Deiters, and V. Gruhn, Systems
Analysis Modelling Simulation 8 (4-5), 1991, pp. 315-325.

[43] Software Process: Principles, Methodology, Technology, J.C. Demiame, B.A. Kaba, and
D.G. Wastell (Eds.), Lecture Notes in Computer Science 1500, Springer Verlag, 1999.

64 Open Source Software Development Process Modeling

[44] Towards a Reference Framework for Process Concepts, R. Conradi, C. Femstrom, A.
Fuggetta, and R. Snowdon, Software Process Technology - Proceedings of the 2nd
European Software Process Modeling Workshop, Trondheim, Norway, Springer Verlag
LNCS635, 1992, pp. 3-17.

[45] Open-Source Development Processes and Tools, C. Boldyreff, J. Lavery, D. Nutter, and
S. Rank, 3rd Workshop on Open Source Software Engineering, ICSE'03, Portland,
Oregon 2003, pp. 15-18.

[46] Beyond Code - Content Management and The Open Source Development portal
(position paper), T.J. Halloran, W.L. Scherlis, and J.R. Erenkrantz, 3rd Workshop on Open
Source Software Engineering, ICSE'03, Portland, Oregon 2003, pp. 69-74.

[47] Capability Maturity Model Version J.T, M.C. Paulk, B. Curtis, M.B. Chrissis, and C.V.
Weber, IEEE Software, 10, 4, 1993, pp. 18-27.

[48] Is Open Source Software Development Essentially an Agile Method?, J. Warsta, and P.
Abrahamsson, 3rd Workshop on Open Source Software Engineering, ICSE'03, Portland,
Oregon 2003, pp. 143-147.

[49] The Rational Unified Process - an Introduction, P. Kruchten, Addison-Wesley, 1998.

[50] When is Free/Open Source Software Development Faster, Better, and Cheaper than
Software Engineering?, W. Scacchi, Working Paper, Institute for Software Research, UC
Irvine, 2003.

[51] Why Not Improve Coordination in Distributed Software Development by Stealing Good
Ideas from Open Source?, A. Mockus, and J.D. Herbsleb, 2nd Workshop on Open Source
Software Engineering, ICSE'02, Orlando, Florida, 2002.

Chapter 3

SOFTWARE DEPENDABILITY APPLICATIONS
IN PROCESS MODELING

Ray MADACHY and Barry BOEHM
use Center for Software Engineering, Department of Computer Science,
University of Southern California, Los Angeles, CA 90098-0781 U.S.A.
E-mail: {madachy, boehm}@sunset.usc.edu

Abstract: Software process modeling can be used to reason about strategies for attaining
software dependability. The impact of different processes and technologies on
dependability attributes can be evaluated through modeling and simulation.
Strategies may have overlapping capabilities, and process modeling is useful
for assessing mixed strategies. Dependability has many facets, and there is no
single software dependability metric that fits all situations. A stakeholder
value-based approach is useful for determining relevant dependability
measures for different contexts. Analytical models and simulation techniques
including continuous systems and discrete event modeling approaches can be
applied to dependability. Continuous systems modeling is easier for aggregate
analyses. Discrete event has some advantages for dependability applications
because multiple attributes related to dependability measures can be attached
to system entities, particularly when those same attributes are represented in
empirical data. Combined approaches using the advantages of both are
attractive for dependability applications. Two primary processes can be
modeled to investigate dependability phenomena. Development process
models mainly address software defect introduction and removal rates.
Operational process models address the probability of various classes of
failure: race conditions, deadlocks, missing real-time deadlines. An overview
of sample applications is presented. An elaborated example shows how
modeling can be used to optimize a process for dependability. There have been
relatively few dependability modeling applications to-date, and the field is rich
for exploration.

Key words: Software process modeling; software dependability; system dynamics; discrete
event modeling.

66 Software Dependability Applications in Process Modeling

1. INTRODUCTION

Software process modeling can be used to reason about software
dependability decisions. The impact of different processes and technologies
on dependability attributes can be evaluated through modeling and
simulation. Strategies may have overlapping capabilities, and process
modeling is useful for assessing mixed strategies. Another complication is
that investments in software dependability compete for resources. Modeling
can help find the right balance of activities that contribute to dependability
with other constraints such as cost and schedule.

There are some analytical models dealing with dependability attributes,
particularly exponential reliability growth models. However, analytical
models have limitations and they don't model the impact of methods for
achieving dependability. The software process has many interacting
elements, and is too complex to model with closed-form analytical solutions.
Process modeling can provide an integrated view of the software process
including system feedback, tradeoffs and sensitivity to changing operational
scenarios. Executable simulation models allow for understanding,
communication, training and decision support. They are ideally suited for
running low-cost experiments in lieu of field experiments.

Important modeling applications to address are process improvement
goals with respect to dependability. Encapsulating knowledge of complex
software process interactions in models allows one to improve processes.
Defect prevention is a highly relevant area related to dependability that
process modeling can specifically address. It is a high maturity key process
area in process improvement frameworks including the Software Capability
Maturity Model (CMM) and CMM-Integrated (CMM-I).

A simulation model can be used to optimize processes with respect to
dependability by running it at various parameter values and evaluating the
outputs after the proper experimental design. In particular simulation can be
used to answer the question "how much is enough?" Efficient software
processes require a careful balance. Typically there are counteracting effects
at work. Cost or risk may rise due to one aspect of a process policy, but due
to another aspect they will decrease along the same direction. Optima are
found by adding the effects together. Examples of this are described later.

Software Process Modelling 67

2. BACKGROUND

This section will address the definitions of dependability and strategies
for achieving dependability attributes. It will then describe common
modeling approaches that can be applied for dependability.

2.1 Software dependability overview

Dependability has many interpretations when considered from different
perspectives. Assessing processes that contribute to dependability requires
one or more evaluation criteria or metrics that enable quantitative
comparisons of candidate process solutions. In practice, a one-size-fits-all
metric is unachievable. Different systems have different success-critical
stakeholders, and these stakeholders depend on the system in different ways.

An important step in understanding the nature of software dependability
is to identify the major classes of system stakeholders, and to characterize
the relative strengths of their dependencies on various attributes of a given
information system. A universal attribute to be optimized on software
systems cannot be defined. Different systems may have multiple
stakeholders with different dependencies on the system. Thus, a value-based
approach that considers stakeholder value propositions can be used to
determine relevant dependability measures for given system scenarios.

Several questions need to be answered in order to understand
dependability concerns and characterize the dependencies of different
stakeholders. This involves identifying the system attributes that
stakeholders depend on, the different classes of stakeholders with unique
dependency patterns, and the strength of their dependencies for each
attribute. With this information the value propositions can be balanced for a
given system.

Dependability attributes are not always independent and the relationship
between technologies for achieving dependability and resultant
dependability measures is not easy to model. Table 1 lists some
representative dependability attributes and their definitions. The table is not
exhaustive but does show the primary dependability attributes of concern we
have identified. See [Boehm et al. 2004a], [Boehm et al. 2004b] for further
details and discussion of the attributes.

Three generic strategies of achieving dependability are to avoid problems
(defect prevention), eliminate problems (finding and fixing defects) or to
reduce the impact of problems. Table 2 shows each of these strategies
broken down into some specific opportunities for achieving dependability
(the list is also not completely exhaustive but shows some major strategies).

68 Software Dependability Applications in Process Modeling

This structure is also called an opportunity tree; a hierarchical taxonomy of
opportunities for achieving objectives.

Table 1: Representative dependability attributes

Dependability Attribute | Definition 1
Protection |

Safety

Security

Privacy

A system provides safety to the extent that it minimizes
stakeholders' expected loss of value due to death,
injury, illness, or damage to equipment, property, or the
environment.
A system provides security_to the extent that it
minimizes stakeholders' expected loss of value from
unauthorized access, use, disclosure, disruption,
modification, or destruction of information assets,
including financial losses and loss of value due to death,
injury, illness, or damage to equipment, property, or the
environment.
A system provides privacy to the extent that it
minimizes stakeholders' expected loss of value from
authorized or unauthorized access, use, disclose, or
modification of stakeholders' personal information,
including financial losses and loss of reputation.

Robustness
ReliabiHty

Availability

Survivability

A system provides reliability to the extent that it
maximizes the probability that the system will provide
stakeholder-desired levels of service (liveness,
accuracy, performance, others) with respect to a
system's operational profile (probability distribufions of
transaction frequencies, task complexities, workload
volumes, others) over a given period of time.
A system provides availability to the extent that it
maximizes the fraction of time that the system will
provide stakeholder-desired levels of service with
respect to a system's operational profile.
A system provides survivability to the extent that it
maximizes the total expected value obtained from
achieving stakeholder-desired levels of service and from
reduced levels of service when the desired levels of
service are unachievable.

Software Process Modelling 69

Table 1: Representative dependability attributes (cont'd)

Dependability Attribute | Definition 1
Quality of Service |

Performance

Accuracy, Consistency

Usability

1 Evolvability

Interoperability

Correctness

Affordability (Cost)

Timeliness (Schedule)

1 Reusability

A system provides performance to the extent that it
maximizes the value of processed information
achievable within the available resources (i.e.,
processors, storage devices, communication bandwidth,
etc.) being used to process the system's workload (the
volume and distribution of requested services/functions
over a given time period). For information utilities in
which value cannot be determined, an alternate
definition is that a system provides performance to the
extent that it provides stakeholders with their desired
information with minimum utilization of limited
resources and response time.
A system provides accuracy to the extent that it
minimizes the difference between delivered
computational results and the real world quantity that
they represent.
A system provides usability to the extent that it
maximizes the value of a user community's ability to
benefit from a system's capabilities with respect to the
system's operational profile (probability distributions of
transaction frequencies, task complexities, workload
volumes, others).
A system provides evolvability to the extent that it
maximizes the added value achievable in modifying the
system or component in desired/valued directions
within a given time period. |
A system provides interoperability to the extent that it
maximizes the value of exchanging information or
coordinating control across co-dependent systems.
A system provides correctness to the extent that its
implementation precisely satisfies its requirements
and/or design specifications.
A system provides affordability to the extent that it
maximizes the value added by developing new
capabilities within a given budget.
A system provides timeliness to the extent that it
maximizes the value added by developing new
capabilities within a given delivery time. On the other
hand, if the set of desired capabilities is fixed, an
alternate definition is that a system provides timeliness
to the extent that it minimizes the calendar time required
to deliver the set of capabilities.
A system provides reusability to the extent that it
maximizes the return on investment of reusing system

1 capabilities in other products.

70 Software Dependability Applications in Process Modeling

Table 2: Dependability strategies opportunity tree

Generic Strategies
defect prevention

defect detection and removal

defect impact reduction

Specific Strategies |
root cause analysis

defect analysis

formal methods

traditional implementation
methods

reviews

automated analysis

testing

fishbone diagrams
brainstorming meetings
defect categorization (e.g.
ODC)
defect prioritization
defect tracking
six sigma
Pareto analysis
mathematical proofs
cleanroom technique
architecture technology
requirements methods
design/code methods
peer reviews, inspections
project reviews
pair programming
completeness checking
consistency checking
traceability testing
compliance testing
requirements and design
structural
operational profile
alpha and beta usage
regression
value/risk-based
test automation
unit/function

fault tolerance
decrease effect of downtime
decrease effect of failure
N-version programming

2.1.1 Dependability modeling framework

A framework for the contribution of process modeling to dependability is
evaluating the effectiveness of the strategy opportunities in Table 2 against
specific dependability goals in Table 1. Much of the difficulty lies in
modeling connections between the strategies, intermediate quantities, and
desired dependability attributes.

With this framework, modeling can investigate the effects of combined
strategies on achieving dependability. Since there is much overlap between
the opportunities, modeling can help determine how much is enough for

Software Process Modelling 71

different situations in order to fmd the most cost-effective balance of
activities. The decision-maker can choose any combination of the
assessment techniques to attain desired attributes. The decisions regard
where and how many resources should be applied, and models are used to
examine the impact on dependability attributes.

2.2 Modeling approaches

Two primary modeling approaches for software dependability are
analytical modeling and process simulation modeling (herein referred to as
process modeling). These approaches and their tradeoffs are summarized in
the following sections.

2.2.1 Analytical models

The most common analytical models for dependability applications are
reliability growth models. In contrast to a Rayleigh function that models
defect patterns during development, reliability growth models typically use
data from the formal testing phases. They are based on the rationale that
defect arrival and failure patterns during testing are good indicators of
fielded product reliability. After development when formal testing occurs, it
is assumed that software becomes more stable and thus reliability grows over
time.

The reliability growth models are most often used for reliability
projection before software is shipped and when development is complete.
They can also be used to model the failure pattern or defect arrival pattern in
the field.

The exponential distribution is the most important distribution in
reliability studies, and is often the basis for many reliability growth models.
ft models the defect arrival pattern in the final testing phases, and is easily
used to fit defect arrival data over time that comes from testing.

Two major classes of software reliability growth models are time
between failure models and fault count models. For both types, the most
important assumption is effective testing. Examples of different reliability
growth models are provided in [Kan 1995].

Not many reliability growth models have been verified in environments
with real industrial data and few are in continued use. Their focuses are
typically narrow and rarely include related factors outside of dependability.
They are scenario-independent and assume stable operational profiles, which
is often not the case.

72 Software Dependability Applications in Process Modeling

2.2.2 Process modeling and simulation

The most common approaches to process (simulation) modeling are
continuous systems modeling (e.g. system dynamics) and discrete-event
modeling. Either method can be used for dependability applications.
Whether a system is represented as continuous or discrete depends on the
specific objectives of a study. A continuous approach assumes system
entities can be treated as homogeneous; a discrete approach assumes
individual characteristics are of importance. Some discrete systems can be
assumed to be continuous for easy representation. Much difficulty will be
avoided if each entity does not need to be traced individually.

In general, system dynamics is easier to use and a more powerful
technique to model long term trends and external system descriptions
[Madachy-Tarbet 2000]. Discrete approaches are normally better to handle
short-term analysis for discrete, small process steps. System dynamics
provides a global perspective (e.g for strategic analyses) while discrete
approaches focus on low-level details (resource utilization, queuing, etc.).

Discrete-event modeling has some advantages for dependability analysis.
In particular, different attributes can be attached to entities like defects. The
attributes may change when system events occur during the simulation (such
as a defect detection or fixing event). Defects can be characterized by their
type, severity, detection effort, removal effort, etc. The advantage of
assigning detailed attributes is a primary reason that companies addressing
defect prevention resort to discrete event or combined modeling. Such
attributes would be very difficult to model with traditional system dynamics.
Some system dynamics modeling tools allow arrays, which may also be used
to assign attributes.

Discrete models contain entities that move through activities carrying
attributes. They can capture the development process in rich detail. Because
these models advance time in discrete or event-based increments, they do not
capture the effect of continuously varying factors.

Systems dynamics models capture the dynamic behavior of project
variables. Significantly, the interaction and feedback among continuous
variables can be observed. System dynamics approaches have modeled
defect levels with no provision to assign attributes to individual defects. That
is because the technique treats flowing entities as homogeneous quantities.
However, systems dynamics models do not capture process steps easily. See
[Kellner-Madachy-Raffo 1999] for a more detailed comparison of process
modeling approaches.

A hybrid approach combining continuous and discrete-event modeling is
very attractive for dependability applications. A combined approach is
advantageous because it can model the creation of artifacts with attributes,

Software Process Modelling 73

modify those attributes based on system variables, and allow system
variables to vary continuously. Some aspects of the software process can be
described easily with continuous systems structures, where applicable, and
others can be represented with discrete-event modeling when detailed entity
attributes are advantageous. See [Martin-Raffo 2000], [Lakey 2003] for
information on hybrid software process modeling.

2.3 Process model constructs

Any modeling approach has to have provisions for representing defects
since latent software defects may impact a system with respect to
dependability attributes. The number of defects is generally considered a
rough measure of overall quality, but is most closely tied to the
dependability attribute correctness (depending on the stakeholder
perspective). To ascertain tradeoffs with respect to dependability decisions,
modeling the resources (e.g. effort and schedule) expended to achieve
dependability are also necessary. Thus the defects should be found and fixed
to achieve dependability. Modeling the resources expended on defect
detection and removal supports tradeoff decisions to achieve dependability
goals.

Both continuous systems and discrete approaches can easily model
defects and effort expenditure. Reusable defect modeling constructs using
system dynamics are provided in [Madachy 2004]. Also provided are
structures that link defects with other process factors.

Feedback within the process is handled much easier with system
dynamics. As stated previously, discrete approaches are advantageous when
attributes for specific entities like defects or software units are to be
represented.

A way to model different defect severities using system dynamics is to
have separate flow chains for different severity levels. One flow chain could
be for minor defects and another for major defects, for example. But this
approach quickly breaks down as the number of severity levels increases, ft
could get quite laborious to create multitudinous flow chains representing all
the desired attribute values, and a continuous range of values for the
attributes is not feasible.

The outputs of a simulation can include defects and expended effort. The
number of remaining defects in a software system will provide an indication
of dependability. The cumulative effort represents the cost to achieve the
degree of dependability.

Discrete event approaches provide the assigning of attributes to entities
like defects. The attributes change value when system events occur.
Orthogonal Defect Classification (ODC) is a simple example where

74 Software Dependability Applications in Process Modeling

attributes can be aligned with empirical process data. The standard ODC
attributes are phase found, activity, trigger, impact, target, type, qualifier and
source. Each of the ODC attributes has a number of available descriptive
values. These attributes may overlap with empirical dependability measures.
A model that partially implements the ODC attribute set is referenced in
[Rus2002].

3. SAMPLE APPLICATIONS

This section overviews some major process modeling efforts that involve
dependability in some fashion. Many past applications handled defects as
part of an integrated process model, and only a few have focused on
dependability and its impact for stakeholders. The vast majority that
represented defects examined defect levels and their effect on cost and
schedule to find and fix them.

Many have evaluated the impact of reviews, quality assurance, test
processes and other assessment techniques on quality (as measured by defect
levels). Some of these have modeled the quality tradeoffs with respect to
cost and schedule.

3.1 Integrated project modeling

The first major software process model was developed by Abdel-Hamid
[Abdel-Hamid-Madnick 1991]. It integrated various facets of a software
project including software production, quality assurance, planning, control
and monitoring. System dynamics was used to model defect flows and
interventions including quality assurance and testing. It had provisions for
defects that pass through phases and other defects that get multiplied.

The flow chains in Figure 1 were used to model the generation, detection
and correction of errors during development. The chains are simplified and
only show the connections to adjacent model elements. There are two types
of errors in the model called passive and active. Active errors can multiply
into more errors. All design errors are considered active since they could
result in coding errors, erroneous documentation, test plans, etc. Coding
errors may be either active or passive.

There is a positive feedback loop between the undetected active errors
and the active error regeneration rate. Potentially detectable errors are fed by
an error generation rate. The errors committed per task is defined as a
function against the percent of job worked. The workforce mix and schedule
pressure also affect the error generation rates. The model addresses both the
growth of undetected errors as escaped errors and bad fixes that generate

Software Process Modelling 75

more errors, and the detection/correction of those errors. Figure 2 shows a
graph of some of the important quantities for a representative simulation run.

Software Devejopment Rate

Potentially Detectable Errors Detected Errors
Reworked Errors

iefteration Rate

Nominal Errors/
Committed per 1 ^

Multiplier Due to
Schedule Pressure

Multiplier Due to Workforce Mix
Daily MP for Rework

Fraction Escaping Errors
that will be Active

Multiplier to Regen
Due to Error Density

Active Error Retirement Rate
Active Errors Retiring Fraction

Bad Fix Gen Rate Passive Error Detection
& Correction Rate

Fraction Escaping Errors
that will be Active

Figure 1: Integrated project model defect flow chains

76 Software Dependability Applications in Process Modeling

1: Potentially DetectE 2; Detected Errors ; Error Generatior> E 4; Error Detection Rb

Pagel

Figure 2: Integrated project model defect dynamics

The error detection rate is a function of how much effort is spent on QA.
It is assumed that easy, obvious errors are detected first, and that subsequent
errors are more expensive and subtle to find.

System testing is assumed to find all errors escaped from the QA process
and bad fixes resulting from faulty rework. Any remaining errors could be
found in maintenance, but is not included in the model.

A representative example of determining "how much is enough" was
provided by the model. The optimal amount of quality assurance activities
was experimentally determined to address the attributes of affordability and
timeliness. The tradeoffs are shown in Figure 3.

3000 -1

lo 2500 -

>
•? 2000 -
c
w 1500 -
0)

^ 1000 -J
w
O 500 -

C

\ rework and testing cost

^yQk cost

) 10 20 30 40 50

QA effort % of total

^ 5500 n

ra 5000 -
•a

% 4500 -

2 4000 -
Q.

« 3500 -
o

3000

(

V overall project cost

\ ^^ V/
) 10 20 30 40

QA effort % of total

50

Figure 3: Quality assurance tradeoffs

Software Process Modelling 77

Too much quality assurance can be wasteful, yet not enough will impact
the effort and schedule adversely because defects will get through. The key
is to run a simulation at applicable values across the spectrum and determine
the optimum strategy, or sweet spot of the process. Based on their
assumptions of a project environment, about 15% of the total project effort
was the optimal amount to dedicate to quality assurance. For further
information, this model is reviewed in substantial detail in [Madachy 2004].

3.2 Modeling peer review effects on quality

A number of extensive modeling efforts have focused on peer reviews as
a means to finding and fixing defects including process tradeoffs. Several
researchers have used system dynamics to investigate the cost, schedule and
quality impact of using formal inspections and other peer reviews on work
products [Madachy 1996], [Tvedt 1996], and others have used discrete event
modeling [Raffo 1995], [Eickelmann et al. 2002].

In [Madachy 1996], a process model examined the effects of inspection
practices on cost, schedule and quality (defect levels) throughout the
lifecycle. It used system dynamics to model the interrelated flows of tasks,
errors and personnel throughout different lifecycle phases and was calibrated
to industrial data. It demonstrated the effects of performing inspections or
not, the effectiveness of varied inspection policies, and the effects of other
managerial policies such as manpower allocation.

Figure 4 shows a portion of the defect model associated with design
errors. Not shown are connections with other elements of the model. Errors
are generated in conjunction with software design, according to an error
density. The proportion of errors caught in inspection depends on the
inspection efficiency (percent of errors found), also called yield. Those
errors found are reworked. The effort expenditures associated with doing
inspections and fixing errors are also modeled. The undetected design errors
enter the coding phase, and the model includes error multiplication between
phases. Errors that remain until system testing are eventually found and
fixed at a higher cost. Figure 5 shows the design defect dynamics from a
typical run.

78 Software Dependability Applications in Process Modeling

desidn rate

design error generati/ rate design errors ̂ ^^.^^ ^̂ ^̂ ^ ̂ ^^^^^ ^̂ ^̂ undetected design errors

design error density .nspection efficiency

design error detection rate

detected design errors Jj^ ^^^^^^ ̂ ^^^^^ ̂ ^^^ reworked design errors

Figure 4: Design defect structure from inspection model

J ,n,ie\'C/t'i'. r o ,̂ (J\ <rj'([

Page 4

Figure 5: Design defect dynamics from inspection model

Analysis from the model showed several inspection policy tradeoffs. One
result showed diminishing returns from inspections as a function of error
generation rates per Figure 6. The implication for process planning is that if
other methods for achieving low defect levels are used (such as a cleanroom
technique), then inspections are not always warranted. They could negatively
impact affordability and timeliness while not achieving significantly higher
correctness or other attributes of concern.

Software Process Modelling 79

5500

^ 5000

c
o

.2

4500

4000

3500

3000

- w ith inspections

- w ithout Inspections

10 20 30

— I 1 —

40 50

Defects/KSLOC

60 70 80

Figure 6: Diminishing returns from inspections

Another result was that code inspections were not always warranted.
When the design was thoroughly inspected, code inspections were not as
cost effective. A dynamic cost driver for use of inspections was derived. See
[Madachy 1996] for more details of the model and quality tradeoffs.

A discrete event model for analyzing the effect of inspections was
developed in [Raffo 1995]. The quantitative cost/quality tradeoffs for
performing inspections were very close to those derived from [Madachy
1996] at the top-level. Both studies support the contention that even though
inspections may increase effort early on, the overall development costs and
schedule are reduced. Dependability improves on all fronts when using
inspections within the assumptions of the models.

The [Tvedt 1996] model allows one to evaluate the impact of process
improvements on cycle time. It specifically addresses concurrent incremental
software development to assess the impact of software inspections. The
model enables controlled experiments to answer such as "What kind of cycle
time reduction can I expect to see if I implement inspections?" or "How
much time should I spend on inspections?" It modeled the specific activities
within the inspection process so that one can experiment with effort
dedicated to preparation, inspection, rework, etc.

3,3 Modeling reliability

Rus and colleagues have developed process models to evaluate strategies
for achieving reliability [Rus 1998], [Rus-Collofello 2001], [Rus-Collofello-
Lakey 1999]. The objective of the research in [Rus 1998] was to model

80 Software Dependability Applications in Process Modeling

software engineering practices for achieving specified software quality
factors, and the impact of applying the practices on cost, schedule and
software quality. Quality factors are those identified in the non-functional
requirements of the product such as reliability and usability. The best
practices for achieving the desired value of each factor was identified.

In [Rus-Collofello 2001], a prototype system dynamics simulator was
developed to predict the reliability of a software product in addition to cost
and schedule. The impact of different reliability practices was modeled
considering the dynamics of defect evolution and the factors that influence
it. A defect evolves through the stages of introduction, detection and
removal. In the simulator, existing reliability prediction and growth models
are integrated to relate defects to failure occurrences in system testing. The
tool can be used to support decisions with respect to reliability strategies,
and simulated projects showed that allocating more effort earlier in
development eventually saves effort and time.

A combined process model to evaluate reliability strategies was applied
to a large industry project in [Rus-Collofello-Lakey 1999]. Factors that
affect reliability and their relationships with other project parameters were
included, and it was shown that reliability cannot be divorced from cost or
schedule. The appropriate combination of strategies was selected in the
model based on individual project characteristics.

ODC was used for reliability modeling in [Rus 2002]. Defect data
collected using the ODC scheme could be used to calibrate a model with
ODC attributes. For example, process data on the effectiveness of different
testing techniques for different types of defects would be useful to represent
in the model. ODC within itself doesn't capture everything that might be
applicable to dependability. One such attribute is defect severity [Rus 2002],
which is commonly recorded. Figure 7 from this study shows a sample
profile of defects and their contribution to the dependability properties
reliability and security.

D^f^cts detected by fetivity. Severity, and Irrfioct

DSy^lemTsst

D Unil Tesling

n Req. R^'Asf/i

Scf*-1 S-e-Vi" Se'*5 Sevi Sc*̂ !-" SsfS

l^liabililv Security

Figure 7: Profile of detected defects and their contribution to dependability
properties [Rus 2002]

Software Process Modelling 81

3.4 Defect prevention

A number of organizations are using process modeling as a preventive
measure. These efforts contribute to achieving high process maturity levels
per the CMM and CMM-I. One example is Motorola, who has been
modeling defect generation and prevention as part of their overall efforts to
improve software processes [Eickelmann et al. 2002]. They have used
combined approaches that use discrete aspects to tie a variety of attributes to
defects including different severity levels and corresponding defect finding
effectiveness values. They have recently started using ODC attributes in
their process modeling.

3.5 Example: Analyzing impact of reliability decisions

This example derived from [Madachy 2004] addresses the dependability
attributes reliability, affordability and timeliness in a commercial market
context. The stakeholder business value being optimized is profit, and the
goal is to maximize profit from investing in processes that contribute to
reliability. The dependability of a product is a primary factor in sales.
Achieving revenue from a reliable product is balanced against its
affordability and timeliness of delivery. The model demonstrates a value-
based framework for decision analysis by modeling dependability impact on
costs and profit of achieving different reliability levels.

The value-based product model is described in detail in [Madachy 2004].
It supports software business decision-making by experimenting with
product strategies and development practices. The model relates the
interactions between product development investments, software reliability
practices, market share, license retention, pricing and revenue generation for
a commercial software enterprise. Risk consequence will be used to find the
reliability sweet spot.

For simplification, software reliability as defined in the COCOMO II cost
model [Boehm et al. 2000] is used to model the tradeoff between reliability
and development cost. There are four different settings of reliability from
low to very high that correspond to four development options. Expert
consensus was used to relate Mean Time Between Failure (MTBF) values to
the ratings scales. Regression analysis of 161 project data points was used to
determine relative cost.

The tradeoff modeled in the reliability cost driver is increased cost for
increased reliability; the increased cost also results in longer development
time. The resulting reliability will modulate the actual sales relative to the
highest potential. A less reliable product will be done quicker; it will be
available on the market sooner but sales will suffer from poor reliability. A

82 Software Dependability Applications in Process Modeling

Delphi poll of software marketing experts was conducted to quantify the
relative sales impact of different reliability levels.

Table 3 shows a mapping between reliability, notional values for the
traditional Mean Time Between Failure (MTBF) measurement, and the
relative impact to sales used in the model. The percent of potential sales
relative to the highest reliability captures the stakeholder value of reliability.

Table 3: Reliability ratings and impacts

Reliability
Rating

Low

Nominal

High

Very High

Defect
Impact

Small,
recoverable
losses
Moderate,
recoverable
losses
Large,
unrecoverable
losses
Human life

Mean Time
Between
Failure (Hours)

10

300

10,000

300,000

Relative
Cost

.92

LOO

1.10

1.26

Percent of Potential
Sales Captured
Relative to Highest
Reliability
30%

65%

95%

100%

The following analysis steps are performed to find the reliability sweet
spot:

• vary reliability across runs
• assess the consequences of opposing trends: market delays and bad

reliability losses
• sum market losses and development costs
• calculate resulting net revenue to find process optimum.

The consequences are calculated for the different options. Only point
estimates are used for the sake of this example. A more comprehensive risk
analysis would consider probability distributions to obtain a range of results.
Probability is considered constant for each case shown here to determine the
costs (or losses). A set of runs is performed that simulate the development
and market release of a new product. The product can potentially increase
market share by 30%, but the actual gains depend on the level of reliability.
Only the highest reliability will attain the full 30%. Other market
parameterizations are an initial total market size equals $64M annual
revenue, the vendor has 15% initial market share, and the overall market
doubles in 5 years.

Software Process Modelling 83

Figure 8 shows the experimental results for an 80 KSLOC product, fully
compressed development schedules and a 3-year revenue timeframe for
different reliability options. The resultant sweet spot corresponds to
reliability being high. The total cost consisting of delay losses, reliability
losses and development cost is minimum at that setting for a 3-year time
horizon. Details of the intermediate calculations for the loss components are
provided in [Madachy 2004].

The sweet spot depends on the applicable time horizon, among other
things. The horizon may vary due for several reasons such as another
planned major upgrade or new release, other upcoming changes in the
business model, or because investors mandate a specific timeframe to make
their return.

The experiment was re-run for typical time horizons of 2, 3 and 5 years
using a profit view (the cost view is transformed into a profit maximization
view by accounting for revenues). The results in Figure 9 illustrate that the
sweet spot moves from reliability equals low to high to very high. It is
evident that the optimal reliability depends on the time window. A short­
lived product (a prototype is an extreme example) does not need to be
developed to as stringent reliability as one that will live in the field longer.

This work shows how software business decision-making can improve
with information gained from simulation experiments. It also illustrates that
commercial process sweet spots with respect to reliability are a balance
between market delay losses and reliability losses. Reliability does impact
the bottom line. Business policies operate within a multi-attribute decision
space though, and there are other dimensions besides time horizon that can
be varied. Other considerations for the model include pricing scheme
impacts, varying market assumptions, periodic upgrades of greater or lesser
reliability, and feedback from the user base to incorporate new features.

4. SUMMARY AND CONCLUSIONS

Process modeling is ideally suited for evaluating dependability strategies.
But dependability has many dimensions and specific attribute measures need
to be defined before modeling starts. We recommend a stakeholder value-
based approach for doing so.

Different modeling paradigms can be used in a dependability context
including analytical models, continuous systems modeling, discrete-event
simulation and hybrid modeling. Process modeling can address a wider
variety of phenomena. Hybrid modeling in particular has great potential for
complex dependability applications, because it combines the advantages of
both continuous systems and discrete-event modeling.

84 Software Dependability Applications in Process Modeling

$35

$30

^ $25
c
5 $20

V^ $15
o o

$10

$5

$0

-development cost
-market delay loss
• bad quality loss
•total cost

Low Nominal High

Software Reliability

Very High

Figure 8: Calculating reliability sweet spot (3-year timeframe)

$180

$160

$140

^ $120
o
E $100

i
^ $80

QI $60

$40

$20

$0

-2 year time horizon
•3 year time horizon
^5 year time horizon

Low Nominal High

Software Reliability

Very High

Figure 9: Reliability sweet spot as a function of time horizon

Software Process Modelling 85

Generalized results from an array of process models indicate that effort
should be put up front in the lifecycle in order to achieve dependability in
the most cost-effective manner. Largely this is because the cost to fix defects
increases over the lifecycle span. Typically the up-front effort is on software
assessment activities such as reviews and quality assurance.

Quality should be built-in rather than the result of repeated testing.
Testing later in the software lifecycle incurs greater costs to find and fix
defects. But there are always diminishing returns for dependability
strategies, and the effort should be carefully applied without waste. Process
modeling was shown to be handy for finding the process sweet spots.

Overall, modeling the relationships between ways to achieve
dependability and dependability attributes is difficult. The problem is
exacerbated due to the fact that dependability has so many interpretations in
different contexts. Therefore there have been relatively few dependability
applications to-date considering the numerous potentials, and the field is ripe
for exploration.

REFERENCES

[Abdel-Hamid-Madnick 1991] Abdel-Hamid T, Madnick S, Software Project Dynamics,
Englewood Cliffs, NJ, Prentice-Hall, 1991

[Boehm et al. 2000] B. Boehm, C. Abts, W. Brown, S. Chulani, B. Clark, E. Horowitz, R.
Madachy, D. Reifer, B. Steece, Software Cost Estimation with COCOMO II, Prentice-
Hall, 2000

[Boehm et al. 2004a] B. Boehm, L. Huang, A. Jain, R. Madachy, "The Nature of Information
System Dependability: A Stakeholder/Value Approach", University of Southern California
Center for Software Engineering working report, 2004

[Boehm et al. 2004b] B. Boehm, L. Huang, A. Jain, R. Madachy, "Reasoning about the ROT
of Software Dependability: The iDAVE Model", IEEE Software, to-be published

[Eickelmann et al. 2002] N. Eickelmann, A. Anant, J. Baik, S. Hyun, "Quantitative Control of
Process Changes Through Modeling Simulation and Benchmarking", Proceedings of the
17th International Forum on COCOMO and Software Cost Modeling, USC, Los Angeles,
CA, October 2002

[Kan 1995] S. Kan, Metrics and Models in Software Quality Engineering, Addison-Wesley,
1995

[Kellner-Madachy-Raffo 1999] M. Kellner, R. Madachy, D. Raffo, "Software Process
Simulation Modeling: Why? What? How?", Journal of Systems and Software, Spring 1999

86 Software Dependability Applications in Process Modeling

[Lakey 2003] P. Lakey, "A Hybrid Software Process Simulation Model for Project
Management", Proceedings of ProSim'03, Portland OR, 2003

[Madachy 1996] R. Madachy, "System Dynamics Modeling of an Inspection-Based Process",
Proceedings of the Eighteenth International Conference on Software Engineering, IEEE
Computer Society Press, Berlin, Germany, March 1996

[Madachy 2004] R. Madachy, Software Process Dynamics, IEEE Computer Society Press,
Washington D.C., to-be published, 2004

[Madachy-Tarbet 2000] R. Madachy, D. Tarbet, "Case Studies in Software Process Modeling
with System Dynamics", Software Process Improvement and Practice, Spring 2000

[Martin-Raffo 2000] R. Martin, D. Raffo, "A Model of the Software Development Process
Using Both Continuous and Discrete Models", Journal of Systems and Software, Vol. 46,
2000

[Raffo 1995] D. Raffo, Modeling Software Processes Quantitatively and Assessing the Impact
of Potential Process Changes on Process Performance, Ph.D. Dissertation, Graduate
School of Industrial Administration, Carnegie Mellon University, Pittsburgh, PA, 1995

[Rus 1998] I. Rus, "Modeling the Impact on Project Cost and Schedule of Software
Engineering Practices for Achieving and Assessing Software Quality Factors", Ph.D.
Dissertation, Arizona State University, 1998

[Rus 2002] I. Rus, "Combining Process Simulation and Orthogonal Defect Classification for
Improving Software Dependability", Proceedings of Thirteenth International Symposium
on Software Reliability Engineering, 2002

[Rus-CoUofello 2001] I. Rus, J. CoUofello, "Integrating Process Simulation and Reliability
Models", Crosstalk, January 2001

[Rus-CoUofello-Lakey 1999] I. Rus, J. CoUofello, P. Lakey, "Software Process Simulation for
Reliability Management," Journal of Systems and Software, vol. 46, no. 2/3, pp. 173-182,
April 1999

[Tvedt 1996] J. Tvedt, "An Extensible Model for Evaluating the Impact of Process
Improvements on Software Development Cycle Time", Ph.D. Dissertation, Arizona State
University, 1996

Chapter 4

SIMULATION PROCESS MODELLING FOR
MANAGING SOFTWARE EVOLUTION*

Meir M. L E H M A N \ Goel KAHEN^ and Juan F. PIAMIL^
' School of Computing Science, Middlesex University, London, U.K., ^ Crown Poly, Inc., 5700
Bickett St., Huntington Park, CA 90255, U.S.A., ^Computing Department, Faculty of Maths
and Computing, The Open University, U.K.
E-mail: mml@mdx.ac.uk; G_Cohen@crownpoly.com ; j.f.ramil@open.ac.uk

Abstract: Software that is regularly used for real world problem solving or addressing a
real world application must be continually adapted and enhanced to maintain
its fitness to an ever changing real world, its applications and application
domains. This adaptation and enhancement activities are termed progressive.
As progressive activity is undertaken, the complexity (e.g., functional,
structural) of the evolving system is likely to increase unless work, termed
anti-regressive, is also undertaken in order to control and even reduce
complexity. However, with progressive and anti-regressive work naturally
competing for the same pool of resources, management will benefit from
means to estimate the amount of work and resources to be applied to each of
the two types. After providing a necessary background, this chapter describes a
systems dynamics model that can serve as a basis of a tool to support decision
making regarding the optimal personnel allocation over the system lifetime.
The model is provided as an example of the use of process modelling in order
to plan and manage long-term software evolution.

Keywords: Complexity; feedback; laws of software evolution; process improvement;
resource estimation; System Dynamics.

This book chapter is a revised version (revision carried out by J.F. Ramil) of a paper
published as Lehman M.M., Kahen G. and Ramil J.F., Behavioural Modelling of Long
lived Evolution Processes-Some Issues and an Example, J. of Software Maintenance and
Evolution, vol. 14, 2002, pp. 335-351.

88 Simulation Process Modelling for Managing Software Evolution

1. INTRODUCTION

Real world software must be progressively fixed, adapted and enhanced,
that is, evolved, if it is to remain satisfactory to its stakeholders, as evidenced
by the universally experienced need for continual software maintenance [1].
The investigation of software evolution includes the complementary
concerns relating to the achievement of evolution, the how, and the nature of
the evolution phenomenon, what it is and why it occurs. Interest in the how is
concerned with methods, tools and techniques changing functional,
performance and other characteristics of the software in a controlled,
disciplined, reliable, fast, cost-effective manner. Interest in the what/why, on
the other hand, focuses on understanding software evolution and its
underlying drivers. The following exemplify the type of questions
investigated under the what/why viewpoint:

• why does software evolution occur?
• why is it inevitable?
• what are identifiable characteristics and attributes of the software

evolution phenomenon?
• what, if any, common patterns are displayed by different evolving

software systems and evolution processes?
• do such patterns relate, in any way, to system size, the nature of

applications, operational domain, organisational domains and the
software engineering paradigm being followed?

• what is the impact of the software evolution phenomenon on, for
example, the software itself, the software process, the application and
the domains in which the software is used?

• what are the implications of such impact on the management of the
evolution process?

In a world increasingly dependent on computers and software both views,
the how and the what/why, represent concerns that must be addressed to
achieve mastery of the software process and its technology. The how view
has been widely adopted but only a small number of researchers world-wide
[e.g. 2, 3, 4, 5] have taken the what/why view and addressed the above and
related questions.

The groups adopting and focussing on the how have concentrated their
attention on the formal description of evolving software artefacts such as
specifications, architectures, programs and so on.

Formal process modelling has been missing from the second, the
what/why, view. This absence may be justified on the basis that its premature
adoption is possibly counterproductive. Early formalisation may limit

Software Process Modelling 89

creativity and the search for adequate understanding of the evolution
phenomenon and for means for its mastery [6, 7]. Instead, since the late 60s
[8] such studies have adopted an approach based on observation of the
evolutionary behaviour of various industrially evolved software systems,
collection and analysis of empirical data, development of isolated models,
their phenomenological interpretation and formulation of hypotheses to be
tested directly or indirectly. This approach has largely followed an
investigative method, based on repeated observation of empirical data,
abstraction of observation so that the focus is on high level characteristics,
followed by identification of regularities and its interpretation. This has led
to results that include the SPE program classification schema [1], the laws of
software evolution [1, 5, 9, 10], and a principle of software uncertainty [11].
More recent results include recognition of the implications of the feedback
nature of the total evolution process [12] and the presence of distinguishable
stages in evolutionary trends of software systems. The accumulated of
results provide inputs to the development of a theory of software evolution
[13]. Achieving a theory of software evolution will provide a systematic
basis for the study of software evolution and its management. However, even
before such a theory is fully achieved one can exploit the practical potential
of the existing results for the planning, management and control of industrial
evolution process improvement. This chapter illustrates this by presenting a
process model which is consistent with the above results and that can be
used to inform decisions related to software evolution management. The
presented model will require adaptation, a more comprehensive empirical
quantitative validation before it can be used for decision making. The
emphasis in this chapter is on the modelling procedure and the level of
abstraction at which a model is constructed rather than in the model itself or
its output. This chapter is structured as follows: section 2 justifies the use of
system dynamics models, section 3 presents the modelling approach, section
4 presents and discusses a simulation process model and the results obtained,
section 5 indicates areas for further work in this topic, section 6 provides
pointers to related work and section 7 ends the chapter with some final
remarks.

2. SOFTWARE PROCESS MODELLING USING
SYSTEM DYNAMICS

Managers and designers of software processes could frequently benefit
from reasoned exploration of behavioural issues but in general lack the tools
to do so. Only a tiny minority of software organisations around the world
have reported the use of process simulation, with the vast majority focused

90 Simulation Process Modelling for Managing Software Evolution

on shorter-term process issue rather than in long term evolution. In a given
domain, (or more technically in a universe of discourse), the use of
formalisms and techniques such as simulation facilitates precise reasoning in
that domain. This also applies to the what/why topics in general and to what
we term behavioural process modelling in particular.

Formalisms to facilitate reasoning about various aspects of software
maintenance and development, system evolution, have emerged over the last
15 years or so from, for example, the work in process modelling languages
[14, 15, 16, 17]. The emphasis of that work has been primarily on process
prescription, with models intended to reflect and explore elements such as
processes workflow controls, sub-process activation conditions and
properties of the process seen as a program (deadlock avoidance, etc.).

Process behaviour and properties such as the economic feasibility of a
process or aspects of performance, however measured are, in general, as
relevant 2iS prescription. Success of a project and survival of the organisation
that undertakes it depends in many businesses, on economic viability of
long-term evolution and/or timely replacement of a legacy system. Thus the
argument in favour of process simulation accords with a recent call for
software engineering research to abandon the flatland of purely
technological issues and to proceed to address other dimensions such as cost
and value [18]. For this reason the study of process behaviour is considered
of relevance in the present context. Of course, with the limitation that, given
that people play a fundamental role in the software process, behavioural
modelling and forecasting will, at best, be limited to representation of the
process at an aggregated level.

Behavioural process modelling may be based on black- and white-box
views. Black box views are exemplified by performing a linear fit or by
fitting other mathematical function to empirical data. In general, the resultant
black box models cannot help much when one wishes to identify potential
process improvements. In this case one requires white box views that seek to
reflect mechanisms inside the process, provide explanation for the observed
behaviour and offer means for the identification of potential process
improvements. The white-box view is illustrated by the models developed by
the software process simulation community [19].

It has been recognised that an industrial software process involves many
feedback loops which pass information and commands from and to different
process participants and stakeholders and their activities [5, 7, 10, 12].
Feedback loop behaviour has been identified as one of the sources of
uncertainty and counterintuitive behaviour in projects and organisations. One
particular white box simulation modelling approach, termed system
dynamics (SD) [20, 21, 22], is of particular interest here because of its
natural provision for representing feedback loops. SD enables the disciplined

Software Process Modelling 91

study of such feedback loops and their impact on process performance. It has
been applied, for example, at the software project level [23]. In our research
we use SD to explore and achieve understanding of the total software
evolution process for long-lived software, the focus of the SD model
presented in this chapter.

System dynamics, and tools such as Vensim® [24] supporting it, were
developed to study the time behaviour (dynamics) of complex systems in
industry and other domains. Many of the available tools enable building and
simulation of the models using graphical interfaces and incorporate
numerical methods needed for the simulation. The semantics and syntax of
SD models, procedures to build and validate them and guidelines for
interpretation of simulation outputs have been discussed, for example, in [20,
21,22,24].

3. A PROCESS MODELLING APPROACH

In order to increase its effectiveness, a modelling approach should be
accompanied by procedures and guidelines to support its use. The approach
followed here to behavioural process modelling includes the following
activities:

i identification of specific questions to be answered, that is, the
modelling requirements

ii identification of a set of attributes representing the process at a high
level of abstraction, by means, for example, of a high level
description of the process to be modelled

iii gathering of historical data which reflecting the attributes of interest
iv identification of reference modes [22], that is, trajectories, patterns

and regularities observed in attributes of interest. These provide
inputs for characterisation of relationships between attributes and for
model validation

V construction of an initial model that reflects only essential elements,
keeping detail to the minimum necessary

vi calibration and validation of the model output against real world
behaviour

vii iteration, refinement and validation until an appropriate level of
detail is reached.

The need for the above activities follows from several observations. A
system dynamics model can, for example, reflect a system at many levels. It
is, therefore, important to identify an appropriate starting level of abstraction
or aggregation. Subsequent refinement must lead, in a disciplined fashion, to
a model that appears appropriate for the purpose for which it is being

92 Simulation Process Modelling for Managing Software Evolution

constructed. In doing this, one tries to conform, when possible, to a top-
down development process of successive refinement [25, 26] and its further
elaboration in 1984 in the LST formal development paradigm [27]. Starting
at a high-level of abstraction, the model is further elaborated by a sequence
of refinements driven by observation and experimentation of the developing
model, successive transformations and validation steps. In general, the
output of each transformation step provided the input to the next. The
process terminates when a model reflecting the desired level granularity and
precision is achieved in, for example, the context of policies or
improvements to be assessed.

In model building and refinement, the recommendation is to aggregate or
even exclude some of the real world detail. In particular those elements
believed to be constant or of second order may initially be omitted. In
general, in the first instance, only influences that may change significantly
over system lifetime need be reflected in the model.

A BEHAVIOURAL PROCESS MODEL EXAMPLE

4.1 Progressive and anti-regressive work

A need for continual enhancement of functional power is one of the
inevitable pressures that emerge when evolving software that addresses real
world problems or automates real world activities [1]. Human resources and
budgets and for evolution of a software system will, in general, be
determined at least one, often several, years ahead. The resources available
over some predetermined period or for the development of a new release will
be primarily intended for progressive [28] activity. This represents activity
that adds functionality to the system, enhances performance and, in general,
adds capability to the system as perceived by users and by marketing
organisations.

In the long-term evolution context, a further underlying fact of life must
be accepted. As successive versions of a real world software system emerge,
source code is augmented, system size increases and fixes, adaptations,
functional and non-functional enhancements get implemented which are ever
more remote from the originally conceived. The consequence of all these
and, in particular, of the superposition of change upon change upon change
is that the software system complexity, however it is defined or measured, is
likely to increase as the system is evolved [9]. This may bring with it a
decline in the functional growth rate, as observed in plots of system growth
over releases e.g., [5]. If this issue is not promptly recognised and addressed,

Software Process Modelling 93

it is likely to lead to decreasing evolvability, increasing maintenance and
evolution costs and even stagnation.

The satisfaction of new or changed needs must not conflict with the need
to ensure that the software remains evolvable. The latter is achieved by
executing activities such as, for example, re-structuring [29], refactoring
[30] and documentation, termed, in general, anti-regressive activities [9].
They neutralise or reverse system degradation due, for example, to growing
structural, functional and operational complexity. Given commercial,
competitive marketplace pressures, such work is not regarded, in general, as
of high priority, but it has long-term impact and, therefore, long-term
justification. However, the anti-regressive activity is in competition with the
progressive since both have to draw, in general, on the same resource pool.

The allocation decision confronts a trade-off. If the main focus is on
progressive and the anti-regressive work is neglected or understaffed, system
structure and complexity will degrade with the enumerated consequences. A
solution to achieve a more disciplined and predictable evolution is to apply
anti-regressive effort, so reducing the level of progressive activity. In
general, there will be no clear measure or other indicator of how much anti-
regressive effort is required, how the required level may be determined or
how to determine the impact and effectiveness of any given level. Whatever
level of resource is applied will detract from that available for system
evolution so reducing the rate of evolution and paying the price in a
competitive market place. It is for management, with the help, for example,
of models as the one presented here, to decide the appropriate level to invest
to control or overcome system aging to ensure future evolvability. In the
limit, if all resources are devoted to anti-regressive activity, system
evolution, once again, comes to a halt.

These extreme situations spell the effective death of the system. Between
them there must be a division of progressive and anti-regressive levels of
investment that achieves the best balance between immediate added
functional capability and system evolution potential and longevity. One
requires methods and mechanisms to support systematic determination of an
appropriate division of resources. Behavioural process modelling provides
means and a support tool for resolving the management conflict that has
been outlined. The system dynamics approach is illustrated by description of
a simple model and some results obtained from it. Even this simple model
provides a tool for separation of concerns between progressive and anti-
regressive work.

The model is of remarkable simplicity considering, for example, that it is
intended to decide how much effort should be applied to the control of
complexity at the total system level.

94 Simulation Process Modelling for Managing Software Evolution

Instead of using direct measures of complexity [31], the model presented
here assumes that each unit of progressive work requires a minimum number
of anti-regressive work units to forestall accumulation of an anti-regressive
deficit [32]. As the required but neglected anti regressive effort accumulates
over time, its impact on productivity begins to be noticeable. Only
restoration to an adequate level can reverse the growth trend and restore
productivity. The model provides a tool to determine what is adequate under
those assumptions.

4.2 Top-down modelling viewed in a sequence

Level-rate diagrams are one of the graphical representations used in SD
modelling. A level-rate diagram is a graph that consists of two connected
sub-graphs: the stock and flow and the information network. The former
resembles a hydraulic system with icons that suggest tanks, pipes and valves.
Levels (or stocks) are represented by variables within the boxes. The
variables on the valve icons represent y?ow variables or rates. The double-
line arrows represent flows. The remainder of the model, represented by
single line arrows and variables connected by them constitutes the
information network. Single lines indicate that the variable being pointed is
calculated as a function of the variable at the arrow's origin.

To make the model easier to understand it is presented here in a sequence
of increasing detail comprising a series of four increasingly detailed level-
rate diagrams. These reflect the process of successive refinement. An initial
top-level view is provided by Figure 1. It shows the arrival and
implementation or rejection of work requests, their validation, and delivery
of the product to the field. It is visualised as a process that addresses a
continuing flow of work in the form of changes in requirements, functional
adaptation, enhancements and so on. The colour grey and the "<...>" in the
variable Time indicate that it is somehow special: its values are not
controlled by the model builder, but assigned directly by the simulation
engine.

Software Process Modelling 95

Figure 1: The initial representation

Figure 2 presents a first refinement of the model, making provision for
delaying output of the validation step and for the authorisation of rework.
Figure 3 refines the model still further to include the assignment of resources
to progressive work. Finally, the full model in Figure 4 includes the sub­
graph for the splitting the effort between progressive and anti-regressive
work.

Figure 2: The model after the first refinement: some part of output held,
rejected or recycled

96 Simulation Process Modelling for Managing Software Evolution

System

Figure 3: Second refinement: resources allocated in order to implement new
functionality

Work Awaiting
Assignment

Adaptation Work,
Requests

Rejected Work
Request^ Impact of'Anti

Regressive Deficit.

PROGRESSIVE
• ANTI-REGRESSIVE

RATIO

Figure 4: Third refinement: resource allocation for complexity control

The diagrammatic representation in Figures 1-4 can provide, at best only,
a high level understanding. Limitations of space prevent presentation of the
various expressions relating its variables. These expressions included in the
executable model in Vensim language are available upon request from the
present authors.

Software Process Modelling 97

As already stressed, an essential part of the approach being described is
that the model be empirically validated at the appropriate level of detail after
each refinement. One possible way of achieving this is by calibrating the
model, comparing predictive model output with actual behaviour of a
software system.

4.3 Model calibration

Before discussing the attempts made at model calibration and the various
virtual experiments performed based on the model, a note is required. The
model presented in this chapter is offered primarily as an example of a high
level approach to behavioural modelling of the process and of the type of
outputs one may expect. The emphasis is not in the particular model being
presented. Its use of the latter as a decision making aid in an actual evolution
process must be preceded by its calibration to that process and empirical
validation, following procedures such as those described in [20, 21, 22, 23,
24]. The sections on calibration and validation in this chapter address only
some of the aspects involved. The interested reader is referred to the
references for a fuller discussion.

What follows are some remarks on model calibration. The latter may start
by exposing the model to available data so that confidence in the model
increases progressively. Such increases will, generally, be accompanied by
growing understanding of the process being modelled. As a first step in the
calibration process, parameters must be set to be consistent with the process
being modelled. This implies measurement of real world attributes
represented in the model. Once those values are obtained, one sets model
parameters to reflect real values. In practice, some of these may not be
readily available, as for example when, as in the present case, one is
modelling long term behaviour that spans over several years, even decades.
It may, therefore, be necessary to, identify ranges of parameters that produce
specific behaviours. In doing so, the model builders start to identify which
parameters are critical in determining specific behaviours. Then one
proceeds to check with process experts and/or by using documentary sources
the possible values in the real process, thereby, building confidence in the
model. Of course, this only yields a partial calibration. A full calibration
requires that all model parameters refiect real world measures. On the other
hand, validation requires that the model is shown to predict real world
behaviour not observed during model building or calibration and remains
accurate over time. Hence, calibration and validation must be continual
activities as long as the model is intended to be used.

In some cases, non availability of direct measures forces one to use
attribute surrogates. For example, to calibrate the present model to a

98 Simulation Process Modelling for Managing Software Evolution

collaborator's system, the level of effort applied, represented by the variable
STAFFING POLICY, was assumed to be roughly proportional to the count of
modules handled [1] per month, an indicator of work-rate, that, in a later
study [5], was found to be correlated with estimates of the effort applied.
Other parameters were found to have no visible impact on growth trend
within a range of values. This suggested that the mechanism to which they
related had no major impact on growth trend at the present level of detail;
that it was not a candidate for calibration adjustments in the current setting.
The inflexion point at around month 96 was hypothesised as - and modelled
by - a step change in the value of Impact of Anti-regressive Deficit.
Alternative explanations to discontinuity points have been put forward, for
example in [33]. They may reflect a switch of process stages in the sense of
other researchers [7].

By fixing the known - or estimated - parameters and exploring the impact
of changes in the others on model's output, one establishes the sensitivity of
the output to all model parameters. For example, in the present model, it was
evident that the value of parameters representing the flows feeding to Work
Awaiting Assignment were relatively unimportant with respect to the rest of
the model as long as there was "enough work waiting". This was, in fact,
accepted as an appropriate property of the model since it implements
common experience in real world evolution processes that the work waiting
queue tends never to be empty.

Having described the partial calibration process follows, it is,
nevertheless, interesting to note that a relatively simple model - by
comparison other that involve tens or even hundreds of variables [23] - such
as the one presented in Figures 1-4 closely approximate real world patterns
of behaviour. Figure 5 shows how closely the model reproduces the growth
trend of one software system - an information system - over 176 months of
its lifetime.

As illustrated by Figure 5, the model is able to replicate actual trends
despite the fact that, in general, only a small sub-set of the model parameters
were known. Note that in order to de-emphasise their role no numerical
values are shown attached to the ordinate of Figure 5 and subsequent figures
in this chapter. Numeric detail may change depending, for example, on the
specific process being modelled and the measures selected to represent the
various attributes.

Software Process Modelling 99

CO

•D
O

CD
N

CO
CD

CU

C/)

0 24 48 72 96 120 144 168 192 216 240
Months

actual
simulated

Figure 5: Simulated model output vs actual growth trend (in number of
modules) for an information system

Model parameters whose value could not be readily ascertained were set
to values that minimised the difference between the actual growth trend and
model outputs. Of course, the validity of values obtained in this way to
advance, for example, understanding of the process and its model
representation, depends on confirmation of its validity by, for example,
successful behavioural prediction. If one were to use the model as a
decision-making tool, one would have to pursue the next stage of model
refinement by determining actual values of the data related to the parameters
and recalibrating. However, the model as presented here suffices to
exemplify the approach and to perform some virtual experiments as shown
below.

4.4 Virtual experiments

Experiments performed using a process model such as the one presented
here are termed virtual because they are not performed in the real world of
software organisations and processes. By their very nature this technique
must be used when policies such as, for example, alternative long-term
evolution strategies are being evaluated. These can, generally, not be
investigated in vivo since the latter would require measurement and
evaluation of alternative evolution processes based on different policies.
Instead one relies on virtual experiments with models that, to some degree,
represent the observed phenomena. With adequate care, the conclusions can
then be applied in the real world.

100 Simulation Process Modelling for Managing Software Evolution

The specific experiment to be described concerns the long-term
consequences of different levels of anti-regressive activity on system growth
rate. Figure 6 represents the simulated model output for 3 values of anti
regressive work, expressed in percentage of total resources.

0)

13
• D
O

0
N

CD

cd

o

96 120 144 168 192 216 240
Months

0% anti-regressive
40% anti-regressive ^ - - ^ .

60% anti-regressive

Figure 6: Simulated model output for several values of anti regressive work.
The anti-regressive work is expressed in percentage of total human resources

available for the evolution of the system

The trends reflected in Figure 6 include, however, temporal variations in
effort applied and an inflexion point. All these made difficult to interpret the
impact of changes in the level of anti-regressive work. To simplify
interpretation, one can investigate the impact of parameter changes, one
parameter at the time. This is illustrated in Figures 7 and 8 where, to isolate
the inflexion point issue from this analysis, the model was fitted to the first
growth segment only. Execution of the resultant model permits a clearer
visualisation of the effect of different anti-regressive policies. This is
illustrated in Figures 7 and 8, which presents the results of model execution,
permitting visualisation of the effect of different anti-regressive policies.

Figure 7 shows several simulated trajectories resulting from alternative
fixed allocation strategies. Their features include several cross-over points.
For the lowest level of anti-regressive work one achieves the highest initial
accomplishment rates, suggesting initially low anti-regressive activity, to
maximise initial growth rate.

Software Process Modelling 101

CD
N

CO

03

O

\ \ \ \ \ \ \ \ ^. ^— ^

J'tja f ' ' i i \ « "̂ ^ '

^ ^ . v ^ - ^ - " " ! " -

0 24 48 72 96 120 144 168 192 216 240
Months

0% anti-regressive
40% anti-reg ressive
60% anti-regressive
80% anti-regressive

Figure 7: Growth trends under different levels of anti-regressive work

Figure 8 indicates the impact of different levels of a fixed anti regressive
work on growth-productivity, that is, the number of elements created per unit
of total effort applied. Total means adding both progressive and anti-
regressive work.

Together the two illustrated experiments suggest that a constant a level,
in this case approximately 60 percent of resources allocated to anti
regressive work maximises long-term growth capability. This number will
vary from process to process. What is important here is that anti regressive
work in excess of some level, constitutes, at least in the context of the present
model, resource wastage.

0 24 48 72 96 120 144 168 192 216 240
Months

0% anti-regressive
20% anti-regressive
40% anti-regressive
60% anti-regressive
80% anti-regressive

Figure 8: Growth-productivity under different policies

102 Simulation Process Modelling for Managing Software Evolution

Direct interpretation of the results suggests that trajectories should be
switched at cross-over points, to maintain a progressive/anti-regressive ratio
that's exploits the trajectory with the highest growth rate. This is, however,
unachievable by simply increasing the anti-regressive/progressive work ratio
since the inertial effect of the accumulated anti-regressive work deficit is
difficult to overcome. Other strategies such as those involving system re­
structuring or even partial system replacement may be required to achieve a
visible recovery in growth rate [33]. To some extent this illustrates the
counterintuitive behaviour of feedback systems. In any event, whether
restructuring occurs or not, the virtual experiments suggest that as a system
ages one may seek to maintain system growth rate or, equivalently, minimise
total effort required to achieve the desired evolution rate, and hence
productivity, by adjusting the level of anti-regressive activity.

4.5 Model validation

It is hoped that the model presented and its discussion has sufficed to
illustrate the approach, the contribution to software process modelling and
process management.

Before its active use as a decision-making tool, for example, it is
important that a behavioural model be calibrated and empirically validated at
the appropriate level of detail, ideally after each refinement. Successful
calibration requires that at least those parameters that are critical in
determining model output reflect real values. The experimentation process
must include observations that identify critical attributes one needs to
measure based on indications of the sensitivity of model outputs to changes
in parameter values. For these illustrations, such critical parameters include
those, for example the Impact of Anti-regressive Deficit (Figures 1-4), that
determines the progressive/anti-regressive ratio and, ultimately, productivity.
These are likely to vary between organisations from time to time, artefact to
artefact, product to product, process to process and even from stage to stage
[4] in the evolution of a system. Hence, calibration and validation must be
ongoing activities. Validation involves assessment of predictive power of the
model by comparison of its output to actual behaviour. This requires, inter
alia that the model can be shown to predict real world behaviour not taken
into consideration during model building and calibration. The initial model
will be based on available data. As additional data is obtained from
experimentation, interpretation of the results of model execution and real
world observation, confidence in the model increases progressively as will
understanding of the process being modelled.

Software Process Modelling 103

5. FURTHER WORK

One of the main assumptions upon which the presented model is based is
that each unit of progressive work will require a given number of anti-
regressive work units in order to counteract the effects of progressive work
in system complexity. More empirical analysis is needed in order to
understand the quantitative relationship between progressive and anti-
regressive work and to determine how such relationship may itself evolve as
a result of, for example, process improvements.

The optimal level of anti-regressive work is likely to vary from process to
process. It is also likely to vary over the operational life of a long-lived
software system. During initial development and the early evolutionary
phases anti-regressive effort is unlikely to be effective. That will, however
change, as changes and additions to the system become ever more
orthogonal to initial functional and architectural concepts and system
structure. Eventually the desirable level of anti-regressive effort will stabilise
in a way that still permits the allocation of sufficient resources to ensure
further effective system evolution. This is one of the aspects that may need
to be considered in further refinements of the model.

More detailed policies and mechanisms such as the inclusion of a
management feedback control loop that changes the degree of anti-regressive
activity over time in response to some simulated circumstance should only
require minor model modification for impact exploration.

For wider application, the model presented will need to be refined to
accommodate, for example, allocation of work to a wider variety of concerns
than anti-regressive and progressive work. A procedure to classify
maintenance and evolution activity may serve this purpose [34]. One could
further address the split between the other categories of effort, though in
principle it appears that anti-regressive effort provides a major contributor
to sustain evolution process effectiveness over the entire application lifetime.
Extension to more general paradigms, such as component-based and reuse-
based processes, and customisation of the model to specific process
instances is likely to raise issues not considered here. These would likely
include the need for measures of stakeholder satisfaction and system value
[18].

The high level modelling approach presented can be complemented by
measurement at a lower level of the complexity of a module or a function
[31]. Once the level of effort for anti-regressive work has been decided, one
could use detailed measurement of the complexity of modules or functions in
order to identify which modules or functions of the system should be
refactored [30] before others for maximum impact on system evolvability.

104 Simulation Process Modelling for Managing Software Evolution

Considerable benefits to software process improvement can emerge from
the use of process simulation models at any level of process maturity, with
the benefits varying from level to level [40]. For example, a simulation
model that has been empirically calibrated and empirically validated with
respect to data from a given organisation can be used as a baseline model
[35]: the impact of future process changes and other relevant management
decisions can be assessed against the model. That is, one can use such model
to assess whether future process adjustments are in fact measurable
improvements. Other benefits are indicated in [35]. One needs to consider,
however, that assessing the level of maturity of a process involves other
aspects [36] than those typically reflected in a simulation model. A process
simulation model is not a substitute of process maturity assessment methods,
but it can support and complement them.

6. RELATED WORK

In contrast to the general trend of software process simulation modelling
[19] which address individual ab initio projects, the present work focuses on
the total evolution process and long-term behaviour [1, 32, 37, 38, 39, 40,
41]. A related characteristic of the work presented here, also recognised by
others [42], is process representation at a high level of abstraction. This
contrasts with wider efforts that investigated processes at a low level of
abstraction [e.g. 23], which can lead to large (e.g. more than 100 variables)
simulation models which present challenges if one wishes to achieve
understanding, calibration, validation, use or reuse of such models.

The process simulation model reported here is inspired in the
understanding reflected by the laws of software evolution. Hence, the
understanding of the laws of software evolution and, in particular, the most
recent views about their empirical support [41, 43] provides the context
within which this modelling work can be better appreciated.

7. FINAL REMARKS

Process modelling is not only relevant in the context of the improvement
of methods and tools to evolve software, that is in the realm of how to
achieve software evolution, but also within the investigation of the what and
why of the evolution process. In order to illustrate this, an after having
provided a necessary background, the chapter described a systems dynamics
simulation model that can serve as the core of a tool to support decisions
regarding allocation of personnel to evolution activities over the application

Software Process Modelling 105

lifetime. More generally, formalisation of concepts and principles developed
over the years [1, 8, 9, 10, 11, 12] has the potential to facilitate their further
extension and unification, leading to a theory of software evolution and a
long sought conceptual framework [13].

Simulation process modelling has been pursued in the software
engineering community for many years [19]. The approach suggests that
even when processes are executed and managed by people, process models
are a source of insight, provide rational for decision making. The local
process will, at each instant in time, be the result of and reflect local
decisions in the context of locally perceived circumstances. Process
modelling at an aggregated, high level of abstraction, can offer the basis for
a tool to assist managers to recognise and control the various influences on
long-term behaviour. By taking these into account, they may direct effort to
activities that otherwise would have been neglected. As argued in this
chapter, the achievement of a minimum level of complexity management
and control activity is required to maintain the rate of system evolution at the
desired or required level. Control and mastery of system evolution is vital in
a society increasingly reliant on ageing software in which increased size,
more interdependent functionality, larger numbers of integrated components,
more control mechanisms, a higher level of organisational interdependency
are likely to lead to decrease in evolvability. Process modelling in general
may be able to control key evolutionary attributes, identify counterintuitive
behaviour and take appropriate action. As society relies increasingly on
software, planning and management of complex, dynamic and ever more
widespread and integrated evolution processes is becoming increasingly
critical.

ACKNOWLEDGEMENTS

Thanks are due to Professors Dewayne Perry (U. of Texas) and Wlad
Turski (U. of Warsaw), Dr. Paul D. Wernick (U. of Hertfordshire) and to the
FEAST industrial collaborators for their valuable inputs to the research
which this book chapter reports. The work reported was in part funded by
UK EPSRC, grants GR/K86008 (FEAST/1, 1996-1998), GR/M44101
(FEAST/2, 1999-2001), GR/L07437 and GR/L96561 (Senior Visiting
Fellowships).

106 Simulation Process Modelling for Managing Software Evolution

R E F E R E N C E S - * indicates that the reference has been reprinted in [1]

[I] Lehman MM, Belady LA (eds.). Software Evolution - Processes of Software Change,
Academic Press: London, 1985

[2] Kemerer C, Slaughter S. An Empirical Approach to Studying Software Evolution.
IEEE Transactions on Software Engineering 1999; 25(4): 493 - 509

[3] Godfrey MW, Qiang T. Evolution in Open Source Software: A Case Study. In
Proceedings of the International Conference on Software Maintenance - 2000: IEEE
Computer Press; 131-142

[4] Rajlich VT, Bennett KH. A Staged Model for the Software Life Cycle, Computer
2000; July: 66 -71

[5] Feedback, Evolution and Software Technology, http://www.doc.ic.ac.uky~mml/feast
[December 2001]

[6] Koestler A. The Act of Creation, Pan Books Ltd: London, 1970; 176 - 177

[7] Lehman MM. Process Modelling: Where Next?, Most Influential Paper of ICSE 9
Award, Proceedings 19th International Conference on Software Engineering-1997,
Boston; 549 - 552. Also in Hunter RB, Thayer RH (eds.). Software Process
Improvement. IEEE CS Press, 2001

[8]* Lehman MM. The Programming Process. IBM Res. Rep. RC 2722. IBM Res. Centre:
Yorktown Heights, NY 10594; Sept. 1969

[9]* Lehman MM. Programs, Cities, Students, Limits to Growth?, Inaugural Lecture,
Imperial College, London, 14 May 1974. In Imperial College of Science and
Technology Inaugural Lecture Series 1970 - 74; 9: 211 - 229. Also in Gries D (ed.),
Programming Methodology, Springer, 1978: 4 2 - 6 2

[10] Lehman MM, Ramil JF. Rules and Tools for Software Evolution Planning and
Management. Annals of Software Engineering 2001, special issue on Software
Management; 11(1), 2001: 1 5 - 4 4

[II] id. Software Uncertainty. In Bustard D, Liu W and Sterritt R (eds.), Soft-Ware 2002,
LNCS 2311, Springer: Berlin, 2002; 174-190

[12] Lehman MM. Feedback in the Software Process. Information and Software
Technology 1996. Special issue on Software Maintenance; 38(11): 681 - 686

[13] Lehman MM, Ramil JF. Towards a Theory of Software Evolution - And its Practical
Impact, invited lecture. Proceedings of International Symposium on the Principles of
Software Evolution ISPSE 2000; Kanazawa, Japan, Nov. 1-2

[14] Osterweil L. Software Processes are Software too. Proceedings 9th International
Conference on Software Engineering-1987. Monterey, CA; 2 - 1 2

Software Process Modelling 107

[15] Osterweil L. Software Processes are Software too, Revisited: An Invited Talk on the
Most Influential Paper of ICSE 9. Proceedings 19th International Conference on
Software Engineering-1997. Boston, MA: 540 - 548

[16] Podoroznhy RM, Osterweil LJ. The Criticality of Modeling Formalisms in Software
Design Method Comparison. Proceedings 19th International Conference on Software
Engineering-1997. Boston MA: 303-313

[17] Wirtz G. Using a Visual Software Engineering Language for Specifying and
Analysing Workflows. IEEE International Symposium on Visual Languages 2000: 97

[18] Boehm BW, Sullivan KJ. Software Economics: A Roadmap. In Finkelstein A (ed.).
The Future of Software Engineering. IEEE Computer Press, 2000: 321 - 343

[19] Kellner MI, Madachy RJ, Raffo DM. Software Process Simulation Modelling: Why?
What? How?, Journal of Systems and Software 1999; 46(2/3): 91-106

[20] Forrester JW. Industrial Dynamics, MIT Press: Cambridge, MA; 1961

[21] Forrester JW, Senge P. Tests for Building Confidence in System Dynamics Models,
In Legasto AA Jr., Forrester JW, Lyneis JM (eds.). System Dynamics. TIMS Studies
in the Management Sciences 14. North Holland: New York; 1980, 209 - 228

[22] Coyle RG. System Dynamics Modelling - A Practical Approach. Chapman & Hall:
London, 1996; 413 pp.

[23] Abdel-Hamid T, Madnick S. Software Project Dynamics - An Integrated Approach,
Prentice-Hall: Englewood Cliffs, NJ, 1991

[24] Vensim - The Ventana Simulation Environment, Version PLE32 Version 5.0b,
Harvard, MA, 2002, Personal Learning Edition (PLE) downloadable from
http://www.vensim.com/ [July 2002]

[25] Zurcher FW, Randell B. Iterative Multi-Level Modeling - A Methodology for
Computer System Design. Proceedings IFIP Congress 1968, Edinburgh, Aug 5 - 1 0 :
D-138-142

[26] Wirth N. Program Development by Stepwise Refinement, Communications of the
ACM 1971,14(4): 221-221

[27] Lehman MM and Ramil JF. Software Evolution and Software Evolution Processes,
Annals of Software Engineering 2002. Special issue on Process-based Software
Engineering, 14. In press.

[28] Baumol WJ. Macro-Economics of Unbalanced Growth - The Anatomy of Urban
Cities, ^w. Econ. Review 1967; June: 415 - 426

108 Simulation Process Modelling for Managing Software Evolution

[29] Griswold WG. Program Restructuring as an Aid to Software Maintenance. Doctoral
dissertation. Department of Computer Science and Engineering. University of
Washington. 1991

[30] Fowler M. Refactoring: Improving the Design of Existing Code. Addison-Wesley
Longman: New York; 1999, 461 pp.

[31] Zuse H. Software Complexity Measures and Models. De Gruyter: NY; 1990

[32] Riordan JS. An Evolution Dynamics Model of Software Systems Development. In
Software Phenomenology - Working Papers of the (First) SLCM Workshop-Aug.
1977, Airlie, Virginia. Pub ISRAD/AIRMICS, Comp. Sys. Comm. US Army, Fort
Belvoir VI, Dec 1977; 339 - 360

[33] Aoyama M. Metrics and Analysis of Software Architecture Evolution with
Discontinuity. In Aoyama M et al. (eds.), Proc. 5'^ Intl. Workshop on Principles of
Software Evolution, IWPSE 2002, in association with ICSE 02, May 19-20, Orlando,
FL.: 103 - 107

[34] Chapin N et al. Types of Software Evolution and Software Maintenance, J. of
Software Maintenance and Evolution: Res. and Practice 2001,13(1); 1-30

[35] Christie AM. Simulation in Support of CMM-based Process Improvement, J. of
Systems and Software 1999, 46(2/3): 107 - 112

[36] Goldenson DR, El Eman K, Herbsleb J, Deephouse C. Empirical Studies of Software
Process Assessment Methods, in El Eman K and Madhavji N H, Elements of Software
Process Assessment & Improvement, IEEE Computer Society, Los Alamitos,
California 1999: Ml-in

[37] Wernick P, Lehman MM. Software Process White Box Modelling for FEAST/1,
Journal of Systems and Software 1999, 46(2-3): 193-201

[38] Chatters BW et al. Modelling A Software Evolution Process: A Long-term Case
Study. J. of Software Process: Improvement and Practice 2000; 5(2-3): 95 - 102

[39] Kahen G, Lehman MM, Ramil JF, Wernick PD. System Dynamics Modelling of
Software Evolution Processes for Policy Investigation: Approach and Example.
Journal of Systems and Software 2001; 59(3): 271-281

[40] Aranda R et al. Quality Micro worlds: Modeling the Impact of Quality Initiatives over
the Software Product Life Cycle. Am. Programmer 1993; 6(5): 52-61

[41] Ramil JF, Smith N. Qualitative Simulation of Models of Software Evolution, Journal
of Software Process: Improvement and Practice 2002; 7: 95-112

[42] Ruiz M, Ramos I. A Dynamic Estimation Model for the Early Stages of a Software
Project, Proceedings of Workshop on Software Process Simulation and Modelling
Prosim 2000, Imperial College, London, 12-14 July

Software Process Modelling 109

[43] Ramil JF. Laws of Software Evolution and their Empirical Support, Invited Panel
Statement, Proc. ICSM2002, Montreal, Canada, 3 - 6 Oct 2002: 71

Chapter 5

SOFTWARE PROCESS MODELLING:
SociO'Technical Perspectives

Patrick WATERSON, Stephan WEIBELZAHL and Dietmar PFAHL
Fraunhofer Institute Experimental Software Engineering (lESE), Sauerwiesen 6, 67661
Kaisers lantern, Germany. E-mail: {waterson, weibel, pfahl}@iese.flig.de

Abstract: In this chapter we describe how the socio-technical systems (STS) approach
has been applied to the software process, as well as attempts that have been
made to simulate and model the process as a whole. We also outline previous
attempts to use socio-technical criteria and guidelines in order to make
improvements to the process of constructing software. We first provide a
broad outline of the STS approach followed by a number of examples drawn
from the areas of COTS-based selection, the People Capability Maturity
Model (P-CMM), competency programmes and process simulation. We
conclude the chapter with a set of future research issues that are most likely to
occupy researchers in the coming years. These issues are drawn partly from
the theoretical literature within software engineering, as well as recent
developments within industrial practice.

Keywords: Process modelling; simulation; software engineering education; socio-
technical systems.

1. INTRODUCTION

The process of building software is by definition an activity that involves
people alongside more established technical considerations. Despite the
rather obvious nature of this statement it is still largely the case that human
aspects of the software process are mostly overlooked or in the most extreme
cases completely ignored. The lack of attention paid to human issues is
frequently cited as one of the main causes of large-scale software disasters
[see for example Gla97], as well as the fact that many software-based

112 Software Process Modelling: Socio-Technical Perspectives

systems are abandoned or fail to make a return on their initial investment
[Lan95].

Aside from the failure of software systems many researchers and
practitioners have also argued that there are many other grounds for
readdressing the balance between the human and technical aspects of the
software process. Within the area of requirements engineering for example,
there has been a great deal of effort placed on involving end users and other
associated experts and specialists as early on in the process of requirements
capture. Similarly, much effort has gone into representing user requirements
in terms of scenarios, and other types of formalism, such that they can be
readily used and exploited by software developers [e.g., JiG94, HCI99]. In
addition, many other roadmaps that have been developed in order to describe
the future of software engineering highlight the need to develop competency
development and educational programmes that extend beyond a traditional
focus on technical aspects of educational curricula and cover in more detail
human and social issues [e.g., FrK94].

At the heart of all of these considerations is the recognition that human
issues play an overwhelming role in determining the success or failure of
software systems. There is also widespread recognition that the productivity
and efficiency of the software process is critical dependent upon human and
social factors. Barry Boehm, one of the most well respected figures within
software engineering for example, states in a recent text that:

''After product size, people factors have the strongest influence in
determining the amount of effort required to develop a software
product." [BAB+00].

An outcome from these developments, whether it be in terms of
requirements engineering or software engineering education, is that in the
last decade a great deal of effort has been placed upon viewing software
engineering and the software process from the point-of-view of a socio-
technical system (STS) and applying the STS approach to the design of
software systems [SoR97].

1,1 The socio-technical systems approach

In its simplest form the socio-technical systems (STS) approach stresses
the importance of recognising a distinction between two sub-systems within
the overall software process (the social and the technical) and the need to
jointly optimise and design these in parallel. Figure 1 is a simple diagram
showing the relationship between the social system (made up on people) and
the technical system (made up of individual software systems). Proponents

Software Process Modelling 113

of the STS approach argue that improvements in the wider software process
can only take place when the design of both social and technical sub-systems
are considered to be complementary (for further details of the theoretical and
historical background to the STS approach see [Wat04]). STS is itself based
on a set of design principles that can be used to help design computer-based
systems. Table 1 outlines a recent set of examples of such principles as they
apply to system design [CleOO].

Social
System

«

D
. ^ -

^

Ili:><
-^H-x ^ \

t o
^o^Q

n ^ —m^-^^
Technical
System

Figure 1: Diagram of the software process as a socio-technical system

114 Software Process Modelling: Socio-Technical Perspectives

Table 1: Example principles of socio-technical systems design [CleOO]

Principle
Design is systemic

Design is socially shaped

Evaluation is an essential part of design

Design involves multidisciplinary education

Details
All aspects of system design are inter­
connected. Leaving out one part (e.g.,
human aspects) will inevitably lead to
sub-optimal performance of the whole
system.
Design is subject to social movements and
trends, these may sometimes manifest
themselves as fads and fashions.
Evaluation, although rarely undertaken,
has several advantages, the chief one
being that an organisation can learn from
its mistakes and successes.
There is a need for a diverse range of
expertise and skills within design in order
to bring about innovation, as well as
viewing design from several perspectives.

The aim of these principles is not to act as some kind of prescriptive
guide as to how to design and balance the interface between social and
technical aspects of system design. Instead, the principles are intended to act
as guidelines and heuristics for software personnel, including managers,
when implementing and evaluating changes to the software process. For
example, the first principle (design is systemic) conveys the need to address
all aspects of design in parallel, rather than leave some issues (e.g., social
and organizational concerns) to a later stage where there is a danger that due
to time pressure, budget restrictions etc., they may be put aside or
overlooked. Similarly, the last principle in Table 1 highlights the need for
educational programmes that span a number of disciplines and competencies
(i.e., in addition to more specialised technically-oriented knowledge or
skills).

Two other aspects of the STS approach should also be highlighted,
particularly since they have been widely applied within attempts to improve
the software process. Firstly, the STS approach stresses the need to evaluate
the result of any changes that are made to the human/technical system, allow
time to reflect upon these, as well as including improvement cycles to take
place over time. Secondly, proponents of the STS approach stress the need to
actively involve all of those involved in the change in the process of
decision-making relating to improvements to the human/technical system.
One consequence of involving all of the stakeholders in the change process
as early on as possible is that levels of ownership be improved and "buy-in"
to the changes likely to take place.

Software Process Modelling 115

1.2 The software process as a socio-technical system

One of the most salient characteristics of the STS approach to the
software process is that it attempts to help to assess, improve and provide
feedback to those involved in process change. Figure 2 outlines a generic
model of the process improvement process as it is depicted in a recent
textbook on software engineering [SomOO]. As can be seen from Figure 2
one of the main areas in which the STS approach may yield benefits is in
terms of providing guidance in designing and developing training and
education programmes. Similarly, the approach may help to bring about
process change and aid modelling efforts. Both the educational and
modelling aspects are described in more detail in section 3 of the chapter.
The specific focus of the STS approach towards understanding and
improving the software process is centred on a number of other additional
themes and associated research questions. Table 2 summarises some
examples of these themes alongside the types of research questions that have
recently attracted the attention of researchers in the field of STS and the
software process. Table 2 is not intended as a comprehensive summary of
the field of STS and the software process, rather it is an attempt to
summarise some broad trends, (some of which are admittedly closer to the
research interests of the present authors than others).

Figure 2: The Process Improvement Process [adapted from SomOO]

116 Software Process Modelling: Socio-Technical Perspectives

Table 2: STS and the software process: Themes, example research questions
and references

Theme

Knowledge, skills and
competencies

Human Resource
Management (HRM)

Participation and
involvement in the
software process

Evaluation/assessment

Communication and
collaboration

Documenting the software
process

Example Research
Questions
What types of knowledge and
skills do software professionals
need and how should these be
taught?
What types of methods and
techniques exist for the delivery
of software education (e.g., in
the work place)?
How should people be allocated
and given responsibility within
software projects?
How can the interrelation
between human, technical and
economic aspects of software
projects be modelled or
simulated?
Who should be involved in the
software process and when?
What is the most appropriate
way in which to involve end
users within the software
process?
How can the effectiveness of
the software process be
measured and benchmarked
over time?
What strategies exist for
changing and improving the
process?
How can effective collaboration
between software personnel be
achieved and integrated with
the software process?
What influence do individual,
group and cultural factors have
upon collaboration?
What information needs to be
documented during the process
and how can this be made to be
efficient and reliable?

Example References

[ShaOO], [SWEOl]

[DeH+03], [GWW04]

[SoBOO], [AcJ03]

[KMR99], [Mad04]

[PDC02], [Win+96]

[HCI99], [0'NJJ99]

[CHM02], [EDM+97]

[CHM02], [Pau+93]

[KrS95], [Kyn91]

[HofOl], [Wal02]

[LSF03], [FoL02]

Many of these themes have a long history within software engineering
and other related disciplines such as human-computer interaction and the
human factors of software development. Bill Curtis for example, in the work

Software Process Modelling 117

he and colleagues carried out in studying large-scale software projects,
underlined the importance of specific types of knowledge (e.g., application
domain knowledge) on the outcomes of software projects [CKI88].
Similarly, research aiming at increasing user participation and overall
coordination between developers and other parties in the software process
has a long history (e.g., [KrS95], [Kyn91]).

By contrast, other themes have achieved a more recent prominence.
Documentation for example, whilst always proving to be a difficulty for
most software engineers (e.g., in terms of maintaining documents relating to
the software process), has been the subject of attention amongst followers of
agile, or extreme programming where much effort has been given over to
minimising the amount of paperwork and information stored during the
software development process [Bec99].

We return to themes such as "Documenting the software process" and
"Communication and collaboration" in section 4 of this chapter where we
examine future research issues in more detail. In what follows we first
review some STS aspects of the software process as they relate to
"Participation and involvement" and "Evaluation/assessment" (section 2),
these cover large-scale approaches (e.g., capability maturity models), as well
as more specific research topics (commercial-off-the-shelf software
selection). In section 3 we focus more specifically on two particular aspects
of the research themes "Knowledge, skills and competencies" and "Human
resource management", namely competency programmes and simulation of
the software process.

2. STS AND THE SOFTWARE PROCESS: COTS
SELECTION AND THE PEOPLE CAPABILITY
MATURITY MODEL (P-CMM)

During the last two decades a good deal of effort within the software
engineering community has been spent on increasing the productivity of
software projects and the quality of the software they produce. In this section
we review developments promoted by considerations of the human role in
two software engineering domains. Both of the domains champion a
participative approach to the software process, whilst at the same time
providing comprehensive metrics and benchmarking tools for the evaluation
of the process as a whole. The first (COTS-based selection) refers to socio-
technical criteria that can be used to evaluate the various types of ready-
made software that exist and can be integrated into larger systems. The
second (The People Capability Maturity Model - P-CMM) is a much larger
endeavour and involves guidelines, criteria and sets of organisational

118 Software Process Modelling: Socio-Technical Perspectives

competencies that can be used the degree of process maturity of an
organisation. P-CMM represents one of the most ambitious attempts to
address socio-technical concerns in the course of bringing about changes to
the software process as a whole.

2.1 Selection of Commercial Off-The-Shelf Systems
(COTS)

COTS have been defined as "a software product developed by a third
party for the purposes of integration into a larger system as an integral part
(i.e., that will be delivered as part of the system to the customer of that
system - i.e., not a tool)'". COTS have proved to be popular amongst
companies since they have been shown to reduce development cost and
shorten time-to-market. However, the use of COTS also raises a number of
risks such as using software that does not sufficiently satisfy the
requirements [Och+00, MaN98]. There are a number of reasons why
selecting COTS to fit the original requirements of the system proves to be
problematic. Firstly, many organisations implement COTS into their
software processes in an 'ad hoc' manner, this in turn makes planning
difficult, lessons learnt from previous cases and systems are not learnt and
appropriate evaluation tools and methods are not used [Kon96]. Secondly,
the types of evaluation criteria used to assess COTS are often inadequate in
that they tend to concentrate on technical capabilities in isolation and fail to
include a consideration of human and business issues [Pow+97]. Despite the
fact that many existing approaches fail to address so-called 'soft' aspects of
COTS selection, there do exist a few exceptions. In particular the STACE
(Socio-Technical Approach to COTS Evaluation) method [KuB99] explicitly
attempts to address human and social issues.

2.1.1 The STACE method for COTS selection

The STACE method consists of four interrelated stages, these are: (1)
requirements elicitation; (2) socio-technical criteria definition; (3)
alternatives identification; and, (4) evaluation/assessment.

During the requirements elicitation high-level customer and system
requirements are gathered through consultation with stakeholders. The
process of consultation is designed to be as participative as possible and may
involve activities such as consultation of documents (drawn from both the
customer and the system), examination of domain knowledge, as well as

' www.cebase.org/www/researchActivities/COTS/definition.html

Software Process Modelling 119

Other activities such as analysis of the market to find out what other COTS
alternatives exist.

During socio-technical criteria definition the high level requirements
from the earlier phase are decomposed into a set of hierarchical criteria
based partly upon customer needs and priorities. Part of the process involves
consulting previous experience gained from past evaluation cases.

Alternative identification involves searching and screening for COTS
products/technology that can later be evaluated in the evaluation stage of the
method. Finally, in the evaluation stage the COTS alternatives are ranked
according how well they match the socio-technical evaluation criteria. The
evaluation stage itself may involve a number of data collection activities
including analysis of documentation, interviews with users of the product
and examination of sample outputs from projects that have used the
products. A range of techniques such as card sorting and laddering [RuM95]
may also be suitable for use during the evaluation stage.

One of the most interesting and important aspects of the STACE method
are the socio-technical criteria since these involve explicit coverage of both
human and technical issues, as well as involving stakeholders within the
main stages of criteria selection and evaluation. The criterion-based and
participative framework underpinning the method are, as we have seen in
section 1 of the chapter, exemplary characteristics of the socio-technical
approach and share much in common with other socio-technical methods
and tools (e.g., see [WOC02] for an additional example).

2.1.2 The use of socio-technical criteria in the STACE method

Four types of STS criteria are involved in STACE, these cover: (1)
technology factors; (2) functionality characteristics; (3) product quality
characteristics; and (4) social-economic factors.

Technology factors include a number of considerations that may need to
be taken into account, these include the intended functionality of the
software (e.g., whether the technology should support distributed objects,
real time processing etc.). In addition, other considerations such as
performance (e.g., dependability, resource utilisation, usability), framework
and architecture style, adherence to interface standards and security (e.g., the
capability of the technology to provide a secure environment), may also be
relevant.

Functionality characteristics and product quality characteristics cover a
range of issues that include the type of environment that the COTS will be
used in (e.g., in a banking or retail environment), as well as considerations
focusing on quality (e.g., system dependability, maintainability).

120 Software Process Modelling: Socio-Technical Perspectives

The final set of criteria cover socio-economic factors and involve non­
technical factors that should be considered during COTS selection. These
non-technical factors range from operational criteria such as costs and
overheads that come about as a result of implementing the COTS (e.g.,
training costs). In addition, there may well be a number of other non­
technical considerations that need to be taken into account. Many of these
may prove to be difficult to quantify, however, they may also prove to be a
significant factor in determining the likely success/failure of the COTS. For
example, management support and organisational politics may play a part in
determining the extent to which user acceptance of the system is likely. In
both cases, the result of considering these types of criteria may mean that
more thought needs to go into managing the change from the old system to
the new. Change management in itself is a difficult issue to resolve over a
short time period and it may be that large-scale changes to the software
process are necessary. In the next section we describe one of the most well
known examples of a method that has been specifically designed in order to
facilitate large-scale, longitudinal socio-technical process improvement.

2.2 The People Capability Maturity Model (P-CMM)

The People Capability Maturity Model (P-CMM)^ came about in the mid-
1990s as a result of work that had been carried out by the Software
Engineering Institute at Carnegie Mellon University on process maturity
frameworks for software organisations [Hum89, Pau+93]. Process maturity
refers to "the extent to which an organisation's processes are defined,
managed, measured, controlled and continually improved" [CHM02, pp.
515]. The range of organisational processes that the P-CMM addresses is
extensive and covers areas of workforce management such as staffing (e.g.,
communication and coordination and workgroup development). These
processes are themselves part of the main P-CMM maturity levels: Level 1
(initial); Level 2 (managed); Level 3 (defined); Level 4 (Predictable); and,
Level 5 (Optimising). Within each of the various levels a set of goals
associated with individual processes, as well as specific sub-components of
the processes which are referred to as practices. Table 3 outlines some of the
key process areas of the P-CMM.

^ P-CMM and the IDEAL model are registered trademarks of Carnegie Mellon University.

Software Process Modelling

Table 3: Process areas of the P-CMM

121

P-CMM Maturity level

5
Optimising

4
Predictable

3
Defined

2
Managed

1
1 Initial

Focus
Continuously improve
and align personal,
workgroup and
organisational
capability
Empower and integrate
workforce
competencies and
manage performance
quantitatively

Develop workforce
competencies and
workgroups, and align
with business strategy
and objectives

Managers take
responsibility for
managing and
developing their
people

Workforce practices
applied inconsistently

Process area
Continuous workforce innovation
Organisational performance
alignment

Mentoring
Organisational capability
management
Quantitative performance
management
Competency-based assets
Empowered workgroups
Competency integration
Participatory culture
Workgroup development
Competency-based practices
Career development
Competency development
Workforce planning
Competency analysis
Compensation
Training and development
Performance management
Work environment
Communication and coordination
Staffing

_

The P-CMM primarily works by providing guidance on implementing
the organisational processes listed in Table 3, it does not, however, specify
the explicit workforce practices to be implemented. Rather, organisations are
encouraged to align the practices to their own particular culture, history and
environment. P-CMM makes use of the IDEAL model [GrM97]^ which in
turn consists of five main components:

• Initiating - establish support and responsibilities for improvement.
• Diagnosing - identify the problems to be solved.
• Establishing - select and plan specific improvement activities.
• Acting - design, pilot, implement and institutionalise activities.
• Learning - identify improvements in IDEAL-based activities.

www.sei.cmu.edu/ideal/ideal.bridge.html

122 Software Process Modelling: Socio-Technical Perspectives

The IDEAL model is applied within all of the maturity levels in Table 3,
for each maturity level a specific process is examined using the five
components of IDEAL: P-CMM also provides some guidance in terms of
examples of how the sub-components of the processes (i.e., practices) can be
implemented. Table 4 outlines some examples based the process of
improving communication and coordination within Maturity Level 2
(Managed).

Table 4: Maturity level processes and associated practices

Maturity level

2
Managed

Process

Communication and
Coordination

Example Practice
Interpersonal communication skills
necessary to establish and maintain
effective working relationships
within and across workgroups are
developed.
Examples of interpersonal skills
that support working relationships
include:
• Interpersonal communication and

dynamics
• Active listening skills
• Group communication and

dynamics
• Interaction protocols for specific

situations.

In order to illustrate the use of the P-CMM in more detail we briefly
describe in the next section an example of its application in an industrial
setting.

2.2.1 Using the P-CMM: An example

[CHM02, pp. 99-103] describes the use of the P-CMM at Lockheed
Martin Missile Systems, a company that built command/control and logistics
management systems. Lockheed Martin had been formed following the
integration of a number of other companies (including IBM Federal Systems
and divisions of Unisys) and was at the time of the P-CMM assessment just
under five years old. The company decided to carry out a formal P-CMM
assessment in order to establish a baseline of understanding regarding its
current process-oriented practices, as well as gauging their strength and
stability within the company. The longer-term goal of the assessment was to
move the company toward attaining Level 3 maturity. One of the areas that
Lockheed Martin chose to focus on as an area for improvement were
communication channels within the company.

Software Process Modelling 123

As a result of using the P-CMM the company decided to establish three
types of communication channel in order to improve communication
between employees and management:

• Open door - where employees could appeal to higher levels of
management in the event that concerns were not resolved with their
immediate manager;

• Speak up - where employees could anonymously engage in two-way
communication with managers and seniors (e.g., raise questions,
make comments or complaints);

• Skip level interviews - these provided an annual opportunity for
employees to meet with managers in order to discuss for example,
career interests or topics of concern within their work area.

Part of the reason these types of initiatives proved to be successful was
that the improvements had been sponsored by senior managers as well as
leaders within the human resources division of the company. Lockheed
Martin also made a number of other changes to their training and
development programmes, as well as their general Human Resource
Management (HRM) strategy.

In the following section we examine these two areas in more detail and
specifically describe two further areas that are important for STS work on
the software process. One area concentrates specifically on competency
development and the assessment of qualification needs, whilst the other
addresses larger concerns, namely simulation of the software process as a
whole.

3. STS AND THE SOFTWARE PROCESS:
COMPETENCY PROGRAMMES AND
PROCESS SIMULATION

3.1 Competency programmes

The qualifications, skills and competencies of the people involved in the
software process are obviously an important determinant of the STS, since
insufficient qualifications for a certain task might result in delays, increased
costs, low software quality or even complete project failures. For instance, a
lack of so called soft skills might be a source of communication problems,
over-qualification might cause low motivation, and missing competencies
might lead to inefficient or incomplete production of deliverables.

124 Software Process Modelling: Socio-Technical Perspectives

Compared to other scientific specialisms, the situation in software
engineering is even more aggravated by the fact that the state-of-the-art
changes frequently: new technologies, tools, standards and regulations are
introduced every once in a while. Thus, the knowledge and skills of people
gets outdated quickly, and continuous learning and training is required to
keep up with technological development. Moreover, there has been, and still
is, a shortage of computer-related professionals on the job market and thus
companies need to find ways either to recruit suitable staff or to train the
right competencies of the existing staff.

In summary, there is a need for systematic and precise analysis of both
the skills and competencies that exist, that are required, and that will be
required in the future. In this section, we describe an approach that
represents steps towards such a skill gap analysis.

3.1.1 A framework for skill-gap analysis

Obviously, an important prerequisite for a skill-gap analysis is a
specification of the skills and competencies that are required to fulfil a
certain role in the software process. Various role-profile sets and skill
portfolios have been proposed (see [NaSOl] for a review of the literature and
also [DiROl] for a case study). These skills can be analysed with different
assessment methods, e.g., surveys, interviews, focus groups, Delphi-
based/key-informant approaches, as well as the use of archival documents
[Saw+98].

As an example of such an assessment approach we describe
QUALISEM-People which is a set of methods, services, and tools to analyse
the qualification needs of a software developing organization as well as
overall educational and training needs [DeH+03]. QUALISEM-People
systematically analyses and evaluates the qualification need by assessing the
actual, target and preferred competence-based needs of employees. Such an
analysis is intended to inform the management and human resource
department about current, required and desired skills and competencies in
order to plan qualification programs. The method is applied in six steps.

Firstly, skill profiles and questionnaires are selected from existing
competence-based frameworks, depending on the current roles of the
employees in the company. These include the so-called career-space
framework^ (a set of generic skill profiles in the Information and
Communications Technology industry), work process oriented profiles of
activities and competencies from the German APO initiative^ as well as role

www. career-space. com
^ Arbeitsprozessorientiert Weiterbildung ("Work-oriented further education"), www.apo-it.de

Software Process Modelling 125

oriented competencies in software engineering from the ESF-Baukasten^.
Thus, QUALISEM-People covers not only subject matter knowledge, but
also methods and tools skills, as well as intra and inter personal social skills.

Second, these standard profiles are tailored to the company's needs and
preferences. In order to keep the questionnaire as short as possible skills and
competencies that are not of interest, e.g., because they are probably not
affected by the introduction of a new tool, might be removed. Additional
aspects might be included because future projects or the company's strategy
will require certain skills.

Third, the employees' skills and desires are assessed. In a self-
assessment with a questionnaire the employees rate their actual skills and
competencies individually and indicate their preference in acquiring these
skills. In addition the manager might augment the results by providing the
same data for each employee, too.

Fourth, the data is aggregated and analysed both on the individual level
as well as on the group level by computing both the mean skill level and the
difference between actual and target skill level based on the role profile.
These results identify the qualification need and provide a prioritisation.

Fifth, the results are fed back to the employees and to the management in
form of a summary report. Employees get their individual analysis, too.

Finally, the skill gap analysis can serve as basis for planning training and
further education.

3.1.2 Experiences with skill-gap analysis

Applying QUALISEM-People in an industrial setting has yielded several
interesting experiences and strengths, but also weaknesses of the approach.
The method is very straightforward to apply and transparent to all
participants. The fact that individual preferences are included in the analysis
and that the assessment is anonymous and confidential, makes the employees
feel very comfortable with the results and enhances the acceptance of the
results.

However, there are limitations to the validity of the data, since
QUALISEM-People considers answers to questionnaires only. Under certain
circumstances (e.g., if there is an interest in presenting oneself in a better
light) the picture would be more accurate if other data sources (e.g.,
observations, interviews, archival documents) are considered as well.

From a STS point of view, skill assessment should be seen as a
continuous and iterative process rather than a single output: the skill gap
analysis is part of the "analyse process" phase in the software improvement

'̂www.iese.fraunhofer.de/ESF-Baukasten/

126 Software Process Modelling: Socio-Technical Perspectives

process (Figure 2). It might either lead to a training of the engineers and/or
to a process change. The results of the intervention are registered and fed
back to another analysis cycle. Such a continuous improvement management
enhances the precision and the interpretability of the analysis.

In the next section we examine in more detail approaches to the
modelling of larger-scale competency programmes and their place within the
wider software process.

3.2 Simulation of the software process: A tool for
analysing and developing competencies in the
software process

Personnel resources are an essential asset in developing a software
product, as well as managing the associated software project and its
processes. Figure 3 sketches the role of people in the context of the software
process, reducing the complexity of actual projects and processes to its most
fundamental entities: activities, artefacts, resources, and supporting materials
[Lon93]. An activity can be characterized as follows: activities use the
available resources and apply the supporting materials in order to transform
input products (e.g., design documents) into output products (e.g., program
code). Artefacts, resources, and materials can be further subdivided into sub-
entities:

• Artefacts: engineering/development documents (e.g., requirements
specification, design documents, program code, QA plans, test plans,
test reports), service and user documents (e.g., service and user
manuals, help texts), management documents (e.g., project plans,
quality management plans, risk management plans).

• Materials: tools (incl. associated documentation), methods (incl.
processes, policies, etc.), techniques (incl. guidelines, checklists,
etc.).

• Resources: time budget, money budget, people (assuming certain
engineering and management roles).

Software Process Modelling 127

Resources

Activity

applies

Materials

People (Engineering / Management)

Time

'— Money

produces

Artifacts
(input & output

products)

Engineering Documents

Management Documents

Service / User Documents

I— Tools / Manuals

Techniques

'— Policies / Rules / Guidelines / Standards

Figure 3: Entities of software processes and their relationships

Each of the entities is characterised by a set of attributes. The main
objective of process engineering and project management is to set and
control the attribute values in such a way that the business goals of the
software organisation are achieved. Typical examples of attributes needed to
capture project and process performance are the following:

• Attributes of artefacts: size, complexity, functionality, quality (inch
non-functional characteristics such as readability, maintainability,
portability, testability, reliability, dependability, etc.), etc.

• Attributes of activities: duration, effort consumption, efficiency, etc.
• Attributes of materials: effectiveness, cost, comprehensibility,

learnability, etc.
• Attributes of resources:

o Time or money budget: size, allocation, availability, etc.
o People: number, availability, cost/salary, motivation, exhaustion,

exhaustion recoverage speed, productivity, ability to learn,
experience, skills, competencies, etc.

Due to the complex interdependencies between all entities and their
associated attributes, the design of development processes that are adequate
for specific software development tasks in a specific software organisation is
a rather complex task. As in other engineering disciplines, models are a
powerful tool in supporting the process design task.

With the help of models, one can capture and describe the relations
between subsets of attributes. Static models (either qualitative or
quantitative) can help in two ways [BDR96]. Firstly, they can help in
eliciting and describing relationships between attributes of process entities.

128 Software Process Modelling: Socio-Technical Perspectives

Secondly, they can help to establish quantitative cause-effect dependencies
that may be used for evaluation and estimation purposes. In addition,
dynamic models can be used to simulate the project and process behaviour,
i.e. the interaction between attributes and entities at any given point in time.
In many traditional engineering disciplines and management science,
simulation is a well-established and commonly used tool, in software
engineering it is currently becoming an accepted and more widely used tool
to support process analysis and improvement, and project planning and
control [Chr99][PfR01].

Particularly, process simulation can help to analyse and better understand
the impact of people-related attributes on project performance (e.g.,
measured in terms of cost and duration) and product value (e.g., measured in
terms of functionality and quality). Depending on the level of detail of the
simulation model, the impact of role-specific or even individual
skills/competencies [AcJ03] on certain activities and their associated
outcomes, and the accumulation of these effects over the full duration of a
project can be assessed. This type of analysis is useful in several ways, for
example:

• To assess the impact of available engineering and management
workforce on project performance.

• To compare alternative workforce allocations. Based on the
comparison, the best allocation can be chosen.

• To assess the value of training, i.e., skill and competence
development, by analysing how much an increase in
skills/competencies (and the associated investment) would improve
project performance. The advantage of simulation for this type of
analysis is that in order to assess the effect of investments in training
on global project performance parameters like product quality,
project duration or effort consumption, only local effects need to be
measured and further investigated, for example with the help of
controlled experiments or qualitative research methods. An example
of such a local effect would be the increase in design productivity
and quality of software engineers in response to participating in
training courses on a specific design method or tool.

Many process modelling and process simulation modelling approaches
have been proposed in the literature [Acu+01][KMR99]. Since software
development is a fundamentally human-based task, constituting a socio-
technical system, the system dynamics approach is a particularly suited
simulation approach to capture the people-related factors and their impact on
software development performance.

Software Process Modelling 129

The system dynamics analysis and simulation method was originally
developed by Forrester in the late 1950s [For61]. In order to make the
system dynamics approach more efficient in the domain of software
development the method IMMoS (Integrated Measurement, Modelling and
Simulation) has been developed [PfR02]. IMMoS provides comprehensive
process guidance during model development, and describes how to re-use
and integrate existing static models (e.g., process models and estimation
models).

The philosophical position underlying the system dynamics method is
what Senge and other researchers call system thinking [Sen90]. In system
thinking, the behaviour of a system is considered as primarily being
generated by the interaction of all the feedback loops over time. In order to
analyse - and eventually change - the behaviour of observed objects in the
real world, it is necessary to understand the important cause-effect relations
of the factors that influence those variables that represent the observed
behaviour. In system dynamics, these cause-effect relations are called base
mechanisms. The union set of all base mechanisms is called a causal
diagram. In order to be able to run system dynamics simulations the causal
diagram has to be converted into a so-called flow graph. A flow graph is the
pictorial representation of a set of mathematical equations. The application
of system dynamics simulation has started with the work by Abdel-Hamid in
the late 1980s [AbM91][ASR93]. In the meanwhile it has been applied with
increasing frequency to many areas in the domain of software engineering
since then [KMR99][Mad04].

Above, we pointed out that process simulation can be helpful in
analysing the impact of human factors on project performance, and in
assessing the value of training and skill/competence development within
software organisations. In addition to that, process simulation and the
development of process simulation models can become powerful in
developing software management skills.

The following sub-sections describe three different approaches that can
be useful in the scope of project management training.

3.2.1 Constructivist approach

With guidance from the trainer, trainees develop step-by-step their own
process simulation model forcing them to make their own assumptions about
cause-effect dependencies and the effectiveness of certain management
policies explicit and, at the same time, providing them with a tool that helps
them to validate these assumptions in a laboratory setting [Mor88][Ste94].
Moreover, this constructivist approach to management training can be
performed in a team-work setting [Ven96], automatically triggering the

130 Software Process Modelling: Socio-Technical Perspectives

exchange of opinions among trainees and thus implicitly developing social
skills related to communication, negotiation, and group decision-making.

Even though the constructivist approach has proven to be very powerful
with regards to learning effectiveness in other areas [Ven90], so far, not
much experience with applying this approach to the field of software
engineering has been reported in the literature. One reason for this might be
the lack of knowledge about this approach in the context of software
engineering training. Therefore, in the future, dissemination of experiences
from other application domains has to be intensified and case studies proving
the applicability of the approach in the field of software engineering need to
be conducted.

3.2.2 Behaviourist approach - Individual setting

In a management game like setting, trainees are confronted with
management-related tasks that they have to fulfil [Gra+92][Lane95].
Transferred to the software development domain, the simulation tool helps to
generate realistic reactions to the decisions taken by the trainees and feeds
them back to them [DrL99][PKR01].

This type of setting has been evaluated in very few studies [Pfa+03].
Initial findings indicate that the results of this approach are limited with
regards to learning effectiveness if preparation before the start of the
simulation game and thorough analysis of the trainees' decisions and the
way how they impact simulated project behaviour are missing. Therefore, in
future applications of this approach, more focus needs to be put on:

• An elaborate introduction of trainees into the problem scope that is
covered (and reproduced) by the simulation model, and;

• Open and in-depth discussion on cause-effect relationships triggered
by the policy decisions that were made by trainees.

3.2.3 Behaviourist approach - Group setting

In contrast to the individual setting described above, where group
activities only apply during the preparation and post-hoc discussion phase,
management games could involve several trainees playing at the same time,
i.e. assuming several specific roles. In such a setting, each role's decisions
might impact the performance of the activities under responsibility of other
roles. In particular, the combination of local decisions, e.g. decisions
independently made by sub-project managers (or other members of the
management team) on the overall project performance can be analysed and
demonstrated in the form of a collaborative management game. For example,

Software Process Modelling 131

the sub-project manager responsible for requirements elicitation and
specification decides to not (completely) follow certain quality assurance
procedures as described in the process handbook. Let's assume the
prescribed type of inspection is not conducted to its full extent and not
according to the defined method. With the help of the process simulation
tool, the local impact of decreased quality of the requirements specification
can be propagated into subsequent development activities (say, design,
coding, testing) under responsibility of other sub-project managers. Now,
these sub-project managers have to deal with a more difficult situation,
which they most likely will not accept as soon as they realise that it is caused
by decisions made in earlier development phases. The task of the overall
project manager will be to moderate this situation, to make sure that the
overall project performance is as good as possible, and that the project goals
are achieved.

Similarly to the constructivist approach, not much experience is yet
available on this type of behaviourist training in the domain of software
engineering. Although much can be built upon available experience gained
from individual learning settings (as described in the sub-section before), in
order to assure the effectiveness of the collaborative group learning setting,
again the training sessions have to be carefully designed and supervised.

4. STS AND THE SOFTWARE PROCESS: FUTURE
ISSUES FOR RESEARCH AND PRACTICE

In this final section of the chapter we revisit some of themes outlined
earlier in Table 2 and section 2 and 3 and consider these in terms of the
developments that are already underway, or are likely to take place in the
future.

4.1 COTS selection and maturity models

In terms of the work we have described on COTS selection criteria,
techniques and methods in general, there is an outstanding need for more
socio-technical work of the kind covered by the STAGE method. Much of
the COTS work focuses to this day on technical aspects of the software
procurement process. Where selection criteria are applied they are most
likely to address issues with regard to system compatibility and migration
problems, as compared to a concern as to how the software will mesh, or
conflict with the organisations culture and established mode of operation.
Much more work needs to be carried out on the one hand developing STS

132 Software Process Modelling: Socio-Technical Perspectives

inspired methods, but also addressing the well-known problems that exist in
making such methods easy to use and cost-effective.

With regard to maturity models such as P-CMM, the outstanding need is
not so much on the development side, since many types of models exist and
their coverage of STS-related components is thorough, rather there is a need
for careful evaluation and assessment of the introduction of interventions
that are themselves based upon maturity levels. Whilst a number of case
studies exist of the use of CMM, there are relatively few of the use of P-
CMM so far. Without these types of evaluation studies it is difficult to assess
the impact of large-scale process improvements, particularly as they take
place over a period of several years. Likewise, there is a need to develop and
evaluate the use of maturity models that are designed to be used in small to
medium size companies. The available evidence suggests that models such
as P-CMM are difficult to tailor to the particular requirements of small
companies, and their effectiveness is more likely in larger enterprises.

4.2 Competency programmes

Skill gap analysis methods might be applied in at least three additional
areas: first, such an analysis might be used not only to assess the skills and
competencies of the current staff, but also to filter and select job applications
automatically. The profiles of open positions would be compared to the
profiles of the applicants. However, the applicants might obviously have a
tendency to gloss over their skills. Thus, such a mechanism should be used
for filtering or recommendation only. Nevertheless, this could support
companies that have to evaluate thousands of applications.

A second application scenario is probably less biased: Skill gap analyses
might also be used to filter offers in electronic job catalogues. Job-seekers
could improve their search query by providing details about their skills and
competencies.

Finally, a skill gap analysis might be the basis for automatically or semi-
automatically provide training recommendations in an e-learning
environment by checking for fulfilled prerequisites and required
competencies.

All these applications already exist at least in simple variants. However,
the validity of these analyses is still an open issue. Empirical studies are
required to test the accuracy of predictions on skill gaps. This includes
evaluation studies both on the granularity, coverage and completeness of the
skill profiles as well as on the feasibility and accuracy of the assessment and
analysis.

Software Process Modelling 133

4.3 Process simulation

While the number of applications in software project and process
management for planning, controlling, exploring and analysing improvement
opportunities is increasing^ process simulation still faces scepticism about
whether it really can provide substantial contributions to solving the
problems in software engineering. This scepticism is mainly due to the
difficulties and often high costs associated with developing and maintaining
valid simulation models. On the other hand, initial experiments have
provided some evidence that process simulation can become a powerful tool
in support of project management training.

In particular, the constructivist approach has yet proven its effectiveness
in other areas than software development. What is needed in the future is the
transfer of successful case examples from these areas into the field of
software engineering education and training. Once case examples suited for
software project management training have been developed, empirical
studies need to be conducted in order to evaluate and improve. In order to
keep effort for modelling before and during training sessions low,
modularisation and tailoring concepts need to be developed and applied.

Regarding the usage of software process simulation in behaviourist
approaches to project management education and training, more focus needs
to be put on 1) introduction of trainees into the problem scope that is covered
(and reproduced) by the simulation model, and 2) an open and in-depth
discussion on cause-effect relationships triggered by the policy decisions that
were made by trainees. For this purpose, guidance from learning theory and
didactics needs to be exploited.

4.4 Other issues

Looking further into the future, aside from competency programmes or
COTS selection for example, many other human-oriented aspects of the
software process are worthy of more specific attention. In particular, we
would point to two areas - software-based documentation and global
software development.

One reason that the area of software-based documentation has recently
come to prominence is due to the current vogue for agile, or extreme
programming. This particular type of software development involves pairs,
or small groups, of programmers developing systems over very short
timescales and at the same time carrying out as little documentation of their
activities as possible. Finding the right degree or extent of documentation

See for example http://www.prosim.pdx.edu/prosim2004/

134 Software Process Modelling: Socio-Technical Perspectives

that should be carried out in agile environments presents one challenge for
the future. Similarly, it has long been known that software documentation is
hard to understand, and difficult to maintain. More recent studies have
shown that documentation is especially important for learning about a
system (e.g., [LSF03]) and how it can be used. Improving the usability of
documentation, tailoring it to specific programming environments (e.g.,
extreme programming), and linking it to other activities important to
software developers, are likely to be important research issues for the future
and will no doubt have relevance for future perspectives on the software
process.

One final area that deserves to be mentioned, partly because it is widely
mentioned in software roadmaps aimed at predicting future developments, is
the trend toward global software development. In terms of the software
process more specifically, there are a whole host of factors that are likely to
occupy research for the next few years. Not least amongst these factors will
be the difficulties brought about to communication and collaboration
patterns as a result of working across different national borders and cultures
(e.g., East-West comparisons). Changes to collaboration patterns, the
establishment of norms for collaboration and effective means of establishing
working relationships across time zones are likely to be prominent topics for
future research. These issues, together with the themes we have elaborated
upon in the earlier parts of the chapter, are likely to make Boehm's comment
(see earlier in the chapter - section 1) about the importance of people factors
in the software process, even more relevant in the future as compared to the
situation as it exists today.

5. SUMMARY AND CONCLUSIONS

In this chapter we have only had space to focus upon a few of the
possible aspects of the software process that are deserving of STS-based
analysis. Many issues remain unresolved and at the present time difficulties
exist in applying the STS perspective to the software process. Part of the
problem relates to the fact that much work within software engineering as a
whole has as yet, not adequately addressed the impact of social,
organizational and behavioural factors upon the process of building and
maintaining software. Whilst we have attempted to describe some valiant
exceptions to this trend, it is still the case that psychological factors for
example, whilst viewed as important if not crucial to the success of software,
are not outlined in more detail or to a level of specificity where they can be
operationalised, or easily understood, by those working in industry or
academia. One reason for this is that definitions of what is meant by the

Software Process Modelling 135

"software process", for example, vary across different disciplines (e.g.,
software engineering, psychology, sociology). This naturally leads to
confusion amongst researchers and frequent problems arising out of the lack
of a common language with which to approach processes, the interfaces
between processes, and software-based models as a whole. STS influenced
approaches to the software process have come a long way in the last ten
years (e.g., both the Capability Maturity Model and P-CMM initiatives have
had a big impact upon research and practice), however, there remains a long
way to go. Steps towards establishing a common inter-disciplinary language
are perhaps one way forward, as are changes to software engineering
education and training (i.e., more detailed coverage of human-centred and
non-technical features of engineering software).

REFERENCES

[AbM91] Abdel-Hamid TK, Madnick SE, Software Projects Dynamics - an Integrated
Approach, Prentice-Hall, 1991.

[ASR93] Abdel-Hamid TK, Sengupta K, Ronan D, ''Software Project Control: An
Experimental Investigation of Judgement with Fallible Information", IEEE Trans, on
Software Engineering, pp. 603-612, Vol. 19, No. 6, June 1993.

[Acu+01] Acuiia ST, de Antonio A, Ferre X, Lopez M, Mate L, "The Software Process:
Modelling, Evaluation and Improvement". In: Handbook of Software Engineering and
Knowledge Engineering, World Scientific Publishing, 2001.

[AcJ03] Acuna ST, Juristo N, "Modelling Human Competencies in the Software Process",
Proceedings of the International Workshop on Software Process Simulation Modelling
(ProSim), Portland, 2003.

[BAB+00] Boehm BW, Abts C, Brown WA, Chulani S, Clark BK, Horowitz E, Madachy R,
Reifer DJ, Steece B, Software Cost Estimation with COCOMO II, Upper Saddle River:
Prentice Hall PTR, 2000.

[BDR96] Briand LC, Differding CM, Rombach HD, "Practical Guidelines for Measurement-
Based Process Improvement", Software Process Improvement and Practice 2 (4), pp. 253-
280, 1996.

[Bec99] Beck K, Extreme Programming Explained, Addison-Wesley, 1999.

[Chr99] Christie AM, "Simulation: An Enabling Technology in Software Engineering",
CROSSTALK- The Journal of Defence Software Engineering, pp. 2-7, April 1999.

136 Software Process Modelling: Socio-Technical Perspectives

[CleOO] Clegg CW, "Sociotechnical Principles for System Design", Applied Ergonomics, 31,
pp. 463-477, 2000.

[CKI88] Curtis B, Krasner H, Iscoe I, "A Field Study of the Software Process for Large
Systems", Communications of the ACM, 31 (11), pp. 1268-87, 1988.

[CHM02] Curtis B, Hefley WE, Miller, SA, The People Capability Maturity Model:
Guidelines for Improving the Workforce, Boston: Addison-Wesley, 2002.

[DeH+03] de Haan D, Waterson PE, Trapp S, Pfahl D, "Integrating Needs Assessment within
Next Generation E-Learning Systems: Lessons Learnt from a Case Study". In: M. Branda,
H. Heiho & J. Multisilta (Hrsg.) Abstract Book eTrain 2003. E-Training Practices for
Professional Organisations, IFIP Open Working Conference (S. 42). Tampere University
of Technology, 2003.

[DiROl] Dingsoyr T, Royrvik E, "Skills Management as Knowledge Technology in a
Software Consulting Company". In: K-D. Althoff, RL. Feldmann & W. Miiller (Eds.),
Advances in Learning Software Organisations (LSO 2001). Berlin: Springer-Verlag.

[DrL99] Drappa A, Ludewig J, "Quantitative Modelling for the Interactive Simulation of
Software Projects", Journal of Systems and Software 46, pp. 113-122, 1999.

[EDM97]E1 Eman K, Drouin J, Melo W, SPICE - The Theory and Practice of Software
Process Improvement and Capability Determination, IEEE Computer Society, 1997.

[For61] Forrester JW, Industrial Dynamics, Productivity Press, Cambridge, 1961.

[FoL02] Forward A, Lethbridge TC, "The Relevance of Software Documentation, Tools and
Technologies: A Survey", Proceedings of the ACM Symposium on Documentation
Engineering (DocEng 2002), ACM Press, pp. 26-33, 2002.

[FrK94] Friedman B, Kahn PH "Educating Computer Scientists: Linking the Social and the
Technical", Communications of the ACM, 37, 1, pp. 65-70. 1994.

[Gla97] Glass RL, Software Runaways: Monumental Software Disasters, New York: Pearson
Education, 1997.

[Gra+92] Graham AK et al., "Model-supported Case Studies for Management Education",
European Journal of Operational Research 59, pp. 151-166, 1992.

[GrM97] Gremba J, Myers C, "The IDEAL model: A Practical Guide for Improvement".
Bridge,3, 19-23, 1997.

[GWW04] Griitzner I, Weibelzahl S, Waterson PE, "Improving Courseware Quality through
Lifecycle Encompassing Quality Assurance", Fraunhofer lESE Report, Kaiserslautem,
2004.

[HCI99] Special Issue on Representations in Interactive Systems Development, Edited by P.
Johnson, E. O'Neill, H. Johnson, Human-Computer Interaction, 14, 1/2.

Software Process Modelling 137

[HofOl] Hofstede G, Culture's Consequences: Comparing Values, Behaviours, Institutions
and Organizations Across Nations, 2nd Edition, Thousand Oaks CA: Sage Publications,
2001.

[Hum89] Humphrey WS, Managing the Software Process, Reading, MA: Addison-Wesley.

[JirG94] Jirotka M, Goguen J, Requirements Engineering - Social and Technical Issues,
London: Academic Press, 1994.

[KMR99] Kellner MI, Madachy RJ, Raffo DM, "Software Process Simulation Modelling:
Why? What? How?", Journal of Systems and Software 46, pp. 91-105, 1999.

[Kon96] Kontio J, "A Case Study in Applying a Systematic Method for COTS Selection",
Proceeding of the 18'^ International Conference on Software Engineering (ICSE '96),
IEEE Computer Society, 1996.

[KrS95] Kraut RE, Streeter L, "Coordination in Software Development", Communications of
the ACM, 38, 3, pp. 69-81, 1995.

[KuB99] Kunda D, Brooks L, "Applying the Socio-Technical Approach for COTS
Selection", Proceedings of the 4'^ UKAIS Conference, University of York, McGraw Hill,
1999.

[Kyn91] Kyng M, "Designing for Cooperation: Cooperating in Design", Communications of
the ACM, 34, 12, pp. 65-73, 1991.

[Lan95] Landauer TK, The Trouble With Computers, Cambridge, Mass.: MIT Press, 1995.

[Lane95] Lane DC, "On a Resurgence of Management Simulation Games", Journal of the
Operational Research Society 46, pp. 604-625, 1995.

[LSF03] Lethbridge TC, Singer J, Forward A, "How Software Engineers User
Documentation: The State of the Practice", IEEE Software, November/December, pp. 35-
39, 2003.

[Lon93] Lonchamp J, "A Structured Conceptual and Terminological Framework for Software
Process Engineering", Proceedings of the Second International Conference on Software
Process, pp. 41-53, February 1993.

[MaN98] Maiden N, Ncube C, "Acquiring COTS Software Selection Requirements", IEEE
Software, March/April, pp. 46-56, 1998.

[Mad04] Madachy RJ, Software Process Dynamics, to appear, 2004.

[Mor88] Morecroft JDW, "System Dynamics and Microworlds for Policymakers", European
Journal of Operational Research 35, pp. 301-320, 1988.

[NaSOl] Nakayama N, Sutcliffe NG, "IT Skills Portfolio Research in SIGCPR
Proceedings: Analysis, Synthesis and Proposals", Proceedings of the 2001 ACM SIGCPR

138 Software Process Modelling: Socio-Technical Perspectives

Conference on Computer Personnel Research, San Diego, California, United States, pp.
100-113,2001.

[Och+00]Ochs M, Pfahl D, Chrobok-Diening G, Nothelder-Kolb B, "CAP - Definition of a
COTS Acquisition Process and Experience of its Application", Fraunhofer lESE Report,
2000.

[0'NJJ99] O' Neill E, Johnson P, Johnson H, "Representations and User-Developer
Interaction in Cooperative Analysis and Design" Human-Computer Interaction, 14, 1/2
pp.43-91, 1999.

[Pau+93] Paulk MC, Curtis B, Chrissis MB, Weber CV, "The Capability Maturity Model for
Software, Version 1.1", IEEE Software, 10, 4, pp. 18-27, 1993.

[PDC02] Biennial Participatory Design Conference (most recent - 2003 - Participation and
design: Inquiring into the politics, contexts and practices of collaborative design work,
PDC 2002 - the Participatory Design Conference, June 23-25, 2002, Malmo, Sweden,
http://www.cpsr.org/publications/publications.html), 2003.

[PfROl] Pfahl D, Ruhe G, "System Dynamics as an Enabling Technology for Learning in
Software Organizations", Proceedings of 13th International Conference on Software
Engineering and Knowledge Engineering (SEKE), Skokie: Knowledge Systems Institute,
pp. 355-362,2001.

[PfR02] Pfahl D, Ruhe G, "IMMoS - A Methodology for Integrated Measurement, Modelling,
and Simulation", Software Process Improvement and Practice 7, pp. 189-210, 2002.

[PKROl] Pfahl D, Klemm M, Ruhe G, "A CBT Module with Integrated Simulation
Component for Software Project Management Education and Training", Journal of
Systems and Software 59 (3), pp. 283-298, 2001.

[Pfa+03] Pfahl D, Laitenberger O, Dorsch J, Ruhe G, "An Externally Replicated Experiment
for Evaluating the Learning Effectiveness of Using Simulations in Software Project
Management Education", Empirical Software Engineering 8, 4, pp. 367-395, 2003.

[Pow+97] Powell A, Vickers A, Lam W, Edwards E. "Evaluating Tools to Support
Component based Software Engineering", Proceedings of the 5'^ International Symposium
on Assessment of Software Tools, IEEE Computer Society, Los Alamitos, 1997.

[RuM95] Rugg G, McGeorge P, "Laddering", Expert Systems, 12, 4, pp. 183-192, 1995.

[Saw+98] Sawyer S, Eschenfelder K, Diekema A, McClur C, "IT Skills in the Context of
BigCo", Proceedings of the 1998 ACM SIGCPR Conference on Computer Personnel
Research, Boston, Massachusetts, United States, pp. 9-18, 1998.

[Sen90] Senge PM, The Fifth Discipline - the Art & Practice of the Learning Organization,
New York: Doubleday, 1990.

Software Process Modelling 139

[ShaOO] Shaw M, "Software Engineering Education: A Roadmap". In: The Future of Software
Engineering (ed. A. Finkelstein), New York: ACM, pp. 371-380, 2000.

[SoBOO] van SoUngen R, Berghout E, "From Process Improvement to People Improvement -
Enabling Learning in Software Development". In: Project Control: The Software Factor
(eds. K. Maxwell, R. Kusters, E. Van Veenendaal and A. Cowderoy), Maastricht: Shaker
Publications, 2000.

[SomOO] Sommerville I, Software Engineering (f^ Edition), London: Addison-Wesley, 2000.

[SoR97] Sommerville I, Rodden T, "Human, Social and Organisational Influences on the
Software Process", Technical Report: CSEG/2/1995, University of Lancaster, Computing
Department, 1995.

[SWEOl] Software Engineering Body of Knowledge - (website:
http://www.swebok.org/home.html), 2001.

[Ste94] Sterman JD, "Learning in and about Complex Systems", System Dynamics Review,
10 (2-3), pp. 291-330, 1994.

[Ven90] Vennix JAM, Mental Models and Computer Models - design and evaluation of a
computer-based learning environment for policy-making, PhD Thesis, University of
Nijmegen, 1990.

[Ven96] Vennix JAM, Group Model Building, John Wiley & Sons, 1996.

[Wal02] Walsham G, "Cross-Cultural Software Production and Use:
A Structurational Analysis", MIS Quarterly, 26, 4, pp. 359-380, 2002.

[WOC02] Waterson PE, Older Gray MT, Clegg CW, "A Sociotechnical Method for
Designing Work Systems", Human Factors, 44, 3, pp. 376-391, 2002.

[Wat04] Waterson PE, "Sociotechnical Design of Work Systems", To appear in: J. Wilson, E.
Megaw (Eds.), Evaluation of Human Work (3''^ Edition), London: Taylor and Francis,
2004.

[Win+96] Winograd T, Bennett J, De Young L, Hartfield B (Eds.j, Bringing Design to
Software New York: Addison Wesley, 1996.

Chapter 6

MOTIVATION AND PROCESS IMPROVEMENT

Watts S. HUMPHREY and Michael D. KONRAD
Software Engineering Institute, Carnegie Mellon University.
E-mail: {watts, mdkj@sei.cmu.edu

1. INTRODUCTION

Most discussions of people issues in software organizations concern the
developers, their capabilities, and their motivations. However, lots of other
people are involved in developing software and we must also consider their
behavior. In this paper, we discuss people issues from a broad perspective.
We address the principal issues concerning developers and their teams, and
we also talk about the other people in the organization and how their
behavior can affect the development work. Our objective is to show how the
attitudes and concerns of the people in the entire integrated development
community can help or hurt the work of developing, supporting, and
enhancing software.

Since motivation and behavior are such enormous subjects, an in-depth
discussion could easily fill several volumes. So, we characterize only the
principal issues and discuss the key problems to be considered. Then we
briefly characterize several improvement frameworks that help an
organization address these people issues and key problems in a coherent and
coordinated way. The Team Software Process (TSP^^) and Personal
Software Process (PSP^^) address best practices for individuals and teams
[Humphrey 1995, Humphrey 2002]. Capability Maturity Model® Integration
(CMMI®) and the People CMM® address the broader organizational,
management, and integration practices [Chrissis 2003, Curtis 2001].

Capability Maturity Model, CMM, and CMMI are registered in the U.S. Patent
and Trademark Office by Carnegie Mellon University.

142 Motivation and Process Improvement

2. ORGANIZATIONAL OBJECTIVES

Before discussing motivation and behavior, it is important to discuss
objectives. First, regarding motivation, what do we want the people, once
motivated, to do and what people are we talking about? Second, what are the
objectives we want their behavior to achieve? Typically, all development
organizations strive to competitively and profitably meet their customers'
needs and to do so according to the schedules and agreed costs. They must
also maintain and build the organization's capability to continue to meet
their customers' needs in the future.

This means that the entire organization must be focused on
accomplishing one thing: motivating and supporting the developers and all
related groups to perform, and continue to perform, the development job in a
superior way. Therefore, as we discuss the typical problems in development
organizations, we will define the steps required for all developers, teams,
managers, and related groups to maximize development performance.

3. HUMAN BEHAVIOR

One of the most useful and enduring frameworks for characterizing
human behavior is Maslow's Hierarchy of Needs [Maslow 1954]. He ranked
human needs in a five-level structure wherein each level provides the
foundation for all of the higher levels. As shown in Figure 1, the bottom
level is survival, or the need for food and shelter. Next comes health and
safety. Third is membership in a group, and fourth is recognition and
prestige. Maslow calls the highest level self-actualization. This level is
where people are motivated by their own accomplishments, not merely by
rewards and recognition.

The reason this hierarchy is important is that truly superior professional
behavior is achieved by self-actualizing people. However, if these people are
not adequately paid or otherwise rewarded, they will likely worry about
recognition or continued membership in the group. In extreme cases, they
could even worry about their health and safety. Under these conditions, they
will have great difficulty performing at the self-actualizing level.

Software Process Modelling 143

Self-actualization

Figure 1: The hierarchy of needs

The needs hierarchy applies to all members in an organization—even its
senior executives. When an organization's senior management is worried
about the survival of the business, they are unlikely to devote much attention
to industry leadership, corporate image, or superior product development.
Furthermore, when senior management is not focused on superior
performance, few if any people at lower organization levels will be either.
Under these conditions, organizations cannot substantially improve their
performance.

A second very useful framework for human behavior is called Situational
Leadership [Hersey 1977]. This framework is particularly appropriate for
software developers and other professionals. As shown in Figure 2,
professional people's behavior can be characterized in a two-dimensional
structure. The first, or task maturity dimension, concerns technical skills and
abilities. Here, the task-mature developer says "Here is how I plan to do this
job," while the immature one says "How do I do this job?" The second, or
the relationship maturity dimension, deals with the professional's
relationship with his or her peers and management. The relationship-mature
developer says "How do you like my work?" while the immature one says,
in effect, "How do you like me?"

144 Motivation and Process Improvement

C

How do you like my work?

How do I do this job?

How do you like me?

How do I do this job?

How do you like my work?

Here's how I'll do this job,

How do you like me?

Here's how I'll do this job.

Low High

Task Maturity

Figure 2: Task and relationship maturity

3.1 The people involved

While many people are involved in or at least have an indirect
relationship to the software and/or systems development process, we only
address six people categories:

• developers
• the development teams
• related development and support people who interface with these

developers (testing, configuration management, and quality
assurance, for example)

• development team leaders and managers
• senior managers and executives
• customers or users of the products developed by the teams.

For each of these categories, we first discuss the motivational issues that
govern behavior within each peer group; then, we address the interactions
among these groups and some common relationship issues [Schein 1996].
Finally, we discuss how various process improvement initiatives impact
these behaviors and relationships.

Software Process Modelling 145

3.2 Developer and team behavior

While people's performance is influenced by many things, the Hierarchy
of Needs and Situational Leadership models provide useful ways for
identifying high performers and for helping managers more effectively guide
and support their people. If the people are not properly trained for their jobs
or they are not supported by appropriately skilled and able coaches and
staffs, they will not likely be task mature. Similarly, if they are not properly
compensated, appraised, and rewarded, they will not likely be relationship
mature. In either case, their work will suffer. Also, if developers do not have
reasonable control over their working environment and feel responsible for
their own plans, processes, and methods, they will not likely behave as self-
actualizing professionals.

While these conditions are simple to describe, they are difficult to
achieve without preparation and guidance. However, when you know how,
the conditions for high performance can be put into place rather quickly.
And, once these conditions are actually in place and are supported and
sustained, team performance is often exceptional.

In addition to the behavior patterns that are common to all developers,
the members of development teams have another important trait: they view
their team environment (i.e., the working environment, the technical
challenges, and the rewards of building an important product) as the most
important single aspect of their work. In fact, even developers who worked
on projects that grossly overran their planned schedules and costs still
viewed their projects as successful if their team environment was personally
rewarding. This view of the team environment can give development teams a
strong sense of membership and provide them with the reinforcement of peer
recognition. This kind of supportive team environment is conducive to self-
actualizing performance. We discuss the ways to achieve such performance a
little later.

3.3 Related group behavior

The members of other related groups typically share the same general
behavioral patterns as the developers, but they often do not work in the same
cohesive and reinforcing team environment. In fact, these "other"
professionals are often viewed by the developers as adversaries. For
example, many development teams feel that the quality assurance (QA)
group members are obstructionists and nit-pickers. They feel that these
people are out to delay the job over unimportant details. Similarly,
developers view the requirements and systems people as hard to please and
possibly even a little arrogant. These people seem to developers to always

146 Motivation and Process Improvement

change their minds while insisting that their current view is right and must
be followed if the product is to have any chance of success.

The members of these other related groups, in turn, have problems with
the developers. For example, they often feel that there is an invisible wall
that separates them from development. Such separation can incite and
exacerbate suspicion and distrust. This in-group/out-group situation can be
destructive, not only for all of the individuals involved, but also for the
project and its success.

A principal challenge in motivating and coaching other related groups is
in devising ways to make them an integrated and coordinated part of the
development effort so they can share in the motivational benefits of a
cohesive team. We also discuss ways to do this in a later section.

3.4 Management behavior

Management behavior is much more complex, so we only touch on a few
key points. First, managers behave according to the task and relationship
maturity framework and have needs as characterized by the Maslow
hierarchy. In general, when managers are relationship-insecure or have needs
for recognition or membership, their behavior is likely to be destructive. One
example is a very accomplished former developer named Tony. He
reluctantly accepted the job of managing a small development group.
Unfortunately, Tony believed that managers were infallible. Since he knew
he wasn't infallible, he was unwilling to have his people see him make
mistakes. He would work for hours in his closed office, figuring out what
each of his people should do, and then call each of them in to issue orders.
Even though he was highly insecure and was truly concerned about how well
he was doing his job, his people viewed him as a tyrant. He was soon moved
to a non-management position in another group and everyone was much
happier.

When managers feel insecure or have needs for recognition or group
membership, they may appear very accomplished to their superiors, but not
to the developers who work for them. The developers will generally feel
threatened in one way or another and be unable to operate at the self-
actualizing level. The performance of development groups with relationship-
immature managers will almost always suffer. Conversely, the relationship-
mature manager will generally recognize the skills and talents of his or her
developers, be willing to learn from them, and rely on them for information
and technical guidance. The mutual trust that such a mature relationship
brings allows open discussion of performance issues and risks, providing the
manager with the insight and influence he or she needs to anticipate issues
and resolve problems.

Software Process Modelling 147

Managers, however, face a set of pressures that the developers do not.
For example, if their department, division, or company is having financial
problems, the managers may have goals that they are unable to (or at least
unlikely to) meet. Often their jobs and those of their team will be threatened
as well. Under these conditions, the relationship-mature manager will protect
his or her people while attempting to maintain a productive working
environment.

However, when managers are unsure of themselves, they are likely to be
relationship-immature. They then react to business stresses in ways that
increase their people's concerns. One of the most common reactions is to tell
the developers, when they ask about the company's situation, that "Those
dumb senior managers have screwed things up again" and that, as a
consequence, the organization is in trouble. This, of course, causes the
developers to worry even more about their jobs and makes it more difficult
for them to continue to do superior work.

Even mature managers, when under severe business pressure, must often
make quick decisions and can easily make mistakes, particularly when they
have inaccurate or inconsistent information. We discuss ways to guard
against these problems later.

3.5 Executive behavior

In many ways, executives can be viewed as just higher-level managers.
They have the same maturity and needs problems as their subordinates and
they also face the same pressures as the lower-level managers, only these
pressures (e.g., the financial health of the corporation) are often much more
threatening to them personally. The big difference between the executives
and the managers that report to them is that the executives are typically out
of touch with the working professionals. Therefore, they must count on these
subordinate managers to keep them informed and to relay communication
and direction. The consequence of being out of touch is that communications
are often garbled and the executive's guidance is misunderstood. This can
easily lead to confusion, and with confusion comes mistakes, mistrust, and
inefficiency.

Executive problems are typically of two kinds. First, they often get late,
incomplete, inaccurate, or even biased information. This inadequate
information is often the cause of poor executive-level decisions.

Second, these executives must lead an organization that is managed by
department heads who have overlapping and conflicting missions and
objectives. Executives generally understand that every organization structure
minimizes some conflicts and exacerbates others. These conflicts can often

148 Motivation and Process Improvement

delay or distort the information that executives need to make timely
decisions.

Even when the executive makes a sound decision, the conflicts among
the subordinate managers can distort the communications needed to
effectively implement it. In a sense, the executive problem concerns
integration. By organizing their operations into separate departments, they
disintegrate it. Their jobs as executives are to ensure that the work of these
disparate functions is integrated into a coherent, competitive, and profitable
business operation.

3.6 Customer behavior

While the customer and end user are not typically part of the
development organization, their behavior can have a significant impact on
the development groups. One quality maxim says that, "If the customer is
willing to accept a poor-quality product, he will almost certainly get it."
Where customers define challenging quality goals and establish
measurement and tracking systems, supplier performance invariably
improves, often by orders of magnitude. Such management and tracking can
substantially increase the pressure on organizations to perform and it can be
highly motivating to the professionals involved. Conversely, if the
measurement and tracking systems are poorly managed or are not consistent
with development practices, the customers' demands can waste a great deal
of development time and damage the developer's motivation and
performance.

The second way that customers can impact development work concerns
the project's overall objectives. If the developers feel they are developing an
important product and that it is for customers that they are truly anxious to
satisfy, they will likely put their heart and soul into the work. On the other
hand, if the customers are difficult to please and only seem to care about cost
and schedule, the developers are not likely to exert maximum effort. The
developers' perception of the customer can make a critical difference, since
superior products are not produced by accident or by people who do not
care.

4, INTERACTIONS AMONG GROUPS

While highly-motivated and capable teams are those most likely to do
superior work, few teams can be entirely independent of their surroundings.
In sports, winning teams need an effective and capable support system. They

Software Process Modelling 149

need professional management and coaching, a trained and competent
support staff, and the applause of a large and enthusiastic group of fans. The
actions of all of these groups must be coherent and reinforce each other, both
to help ensure a winning performance and to help the team recover quickly
from temporary setbacks.

Development teams have similar needs. Management must not only
demand superior performance, they also must recognize and demonstrate
their appreciation for quality work and promptly address quality
shortcomings. Just as in sports and the performing arts, superior
development work requires informed and capable coaching. The coach's job
is to recognize and applaud superior individual work, to diagnose
performance shortcomings, and to know how to motivate individual team-
member improvement. The coach also supports the entire team, sees where
teamwork falls short, and knows how to motivate overall team improvement.

In development work, management's influence is critical to the team's
success. Management's priorities define the team's priorities, and when
management's words and actions are inconsistent or when different
management levels provide conflicting guidance and direction, teams will be
confused and their performance will suffer. The managers must not only be
consistent, they must also know the performance they want, recognize it
when they get it, and insist on corrective action when teams fall short. This
must be true at every management level.

The team leader must motivate the performance of the team and all of its
members. Similarly, higher-level managers must have consistent
performance standards, require regular progress reporting, provide periodic
feedback, and recognize both good and bad performance. At more senior
management levels, reports will be less frequent and more concise, but these
managers must still detect problems and obtain whatever detail is needed to
ensure that corrective action is taken. However, managers at all levels must
insist on superior work and applaud and reward such work when they get it.

The development team's interactions with related groups will also impact
its performance. For example, requirements groups must define the product's
characteristics. They must do this even when the users have only a vague
idea of what they need. They must also communicate updates to the
product's characteristics as the user needs become better understood.
Conversely, the developers want complete information as soon as they can
get it and requirements that are frozen for at least long enough to build the
next product version. In fact, they will strenuously object whenever the
requirements do change. Consequently, requirements groups tend to resist
providing information to developers until they believe it represents what the
users really need. These conflicting attitudes impede early agreement on the
product's requirements and can substantially delay projects.

150 Motivation and Process Improvement

Systems design groups have similar relationship issues and must make
trade-offs between conflicting needs and capabilities. They must often
specify hardware capabilities to software groups and software performance
to the hardware groups, sometimes before either group has started on the
design work. The requirements and systems design groups are merely two
examples of the many groups with which development teams must work.
Other groups include testing, quality assurance, facilities, finance,
configuration management, publications, and the release group. Each of
these groups will have differing assumptions, goals, and motivations and
these differing perspectives can easily cause confusion and discord. Unless
properly managed and resolved, such problems often damage the quality and
productivity of the team's development work.

The impact of customer relationships on team performance is much more
difficult to characterize. In a sense, the customer can be viewed as the major
source of pressure on the organization. The impact of this pressure is a
function of the customer's power over the organization, the maturity of the
management team, and the customer's attitude toward the development work
and how it is done. Generally, the behavior of the team will depend on the
way the team interacts with its management and the customer. The behavior
of each of these groups can be characterized in terms of task and relationship
maturity. The general nature of these behaviors is summarized in Tables 1
and 2.

As can be seen from Tables 1 and 2, the performance of development
groups depends not only on the behavior of the team and all of its members,
but also on the behavior of other related groups of people. In the following
paragraphs we discuss the principal actions needed to build and maintain the
team's relationship and task maturity, as well as the actions required to
improve the maturity of the integrated environment in which the team
operates.

5. IMPROVING TEAM PERFORMANCE

Just as the performance of an organization depends on the performance
and integration of its teams and related groups, so the performance of the
teams and related groups depend on the performance and integration of their
members. Therefore, to improve team performance, we must build both the
task and relationship maturity of the members as well as the task and
relationship maturity of the team as a unit.

Software Process Modelling 151

Table 1: Task maturity characteristics

Role
Individual
Developer

Development
Team

1 Related Groups

1 Management

1 Executives

1 Customer

Mature
• Uses defined methods
• Measures, plans, and

tracks personal work
• Personally responsible

for product quality

• Defined, effective, and
consistent methods

• Detailed, measured, and
tracked plans

• Measured, tracked, and
managed quality goals

• Defined, effective, and
consistent methods

• Detailed, measured, and
tracked plans

• Measured, tracked, and
managed quality goals

• Plan-driven priorities
• Identified and managed

risks
• Follow the process
• Negotiate commitments
• Strategic focus
• The best way is always

fastest and cheapest
• Reward quality work
• Clearly defined product

objectives
• Measured and tracked

project and process goals

Immature
• Ineffective methods
• No plans and

imprecise status
measures

• Quality is a testing
problem

• Inadequate,
inconsistent, or
ineffective methods

• Poor plans or no plans
and imprecise status
measures

• No quality goals or
measures

• Inadequate,
inconsistent, or
ineffective methods

• Poor plans or no plans
and imprecise status
measures

• No quality goals or
measures

• Crisis-driven priorities
• Deferred problems and

issues
• Processes ignored
• Commitments missed
• Tactical focus
• Problems fixed later
• Reward "fire-fighters"

• Vague or ill-defined
objectives

• Undefined,
unmeasured, and
untracked project or
process goals

152 Motivation and Process Improvement

Table 2: Relationship maturity characteristics

Role
Individual Developer

Development Team

Related Groups

Development Management
Executive Management
Customer

Mature
• Self-directed

• Self-directed

• Service-oriented

• Rational management,
fact-based decisions

• Trusting and fact-based
relationship

Immature
• Management-

directed
• Team-leader/ '

management-
directed

• Bureaucratic and
rules-driven

• Directive
management

• Contract-driven and
rumor-based
relationship

The performance of individual development team members is determined
by their personal practices. Similarly, the performance of the composite team
is determined by the way the members perform individually and as a
coherent group. For example, consider the conditions required to make a
superior football team. First, all of the members must be superior individual
performers, but they must also work together effectively. This effective
teamwork requires that they have common goals and a mutually-understood
and agreed-to set of rules and practices, as well as effective management and
coaching support.

As shown in Figure 3, to improve development performance, we must
similarly consider all of these elements. The Personal Software Process
(PSP^^) provides a framework for improving the task and relationship
maturity of individual team members, while the Team Software Process
(TSP^^) provides a framework for improving the task and relationship
maturity of the overall team [Humphrey 1995, Humphrey 2002].

5.1 Improving team member performance with the PSP

Each team member's task maturity can be considered as having three
elements: technical skills, project skills, and quality management skills.
While technical skills are critically important, they are generally addressed
in the developer's education and training. Since personal skills in project and
quality management have not typically been addressed in an orderly or
consistent way by a traditional computer science education, the PSP was
introduced by the Software Engineering Institute (SEI) to address this need.

Personal Software Process, PSP, Team Software Process, and TSP are service
marks of Carnegie Mellon University.

Software Process Modelling 153

Function, cost, and
schedule

Cost and schedule,
Fear and mistrust

Figure 3: Pressures on the developers

The PSP shows developers how to follow a defined personal process,
how to measure their work, and how to use these measures to make precise
and accurate personal plans. The PSP also shows developers how to
establish personal quality goals, how to measure their performance against
these goals, and how to manage the quality of the products they produce.
Once they have learned these skills and have the personal confidence that
comes with such task maturity, developers can make accurate plans for their
personal work and convincingly defend these plans with their team
members, managers, and customers. This provides them with the foundation
to operate in a relationship-mature way with their associates and to deal
objectively with their customers and managers.

When developers have personal and team data and know how to use
these data to make precise and accurate plans, they need not rely on emotion
and intuition to manage their personal work. They can use historical data to
support rational debates on the best courses of action. This approach
provides them with the task and relationship maturity needed to participate
effectively on a self-directed team.

154 Motivation and Process Improvement

5.2 Improving team performance with the TSP

Team task maturity consists of the same elements as individual task
maturity: technical skills, project skills, and quality management skills.
These team skills are built with the TSP when the team leader and all of the
team members are coached and guided through a team planning and
management process that builds and sustains self-directed teamwork.

In building self-directed teams, the TSP launch process starts by
establishing team goals. After hearing their business goals from
management, the team works under the guidance of a trained coach to select
its team member roles, define the team's processes, and produce a complete
team plan. The team, as a complete unit, then analyzes project risks and
negotiates its plan with management.

The TSP has proven to be highly effective in building and guiding mature
and capable development teams. These teams have consistently produced
high-quality products, on schedule, and within budget. What is perhaps most
important, the team members find that working on a self-directed TSP team
is a truly enjoyable and rewarding personal experience [Davis 2003].

6. IMPROVING ORGANIZATIONAL
PERFORMANCE

As we have already observed, a development team's performance
depends on the task and relationship maturity of other members and groups
in the organization. To systematically improve the task and relationship
maturity of all groups and individuals within the organization and to ensure
that the work of each group integrates appropriately with that of other
groups, the following actions must be taken.

• Instill good management practices in development teams and related
groups and standardize the processes that these groups use.

• Establish and maintain a participatory culture where individuals and
teams take responsibility for their own and their groups'
performance.

6.1 Good management practices in development

If development teams and related groups do not plan and manage their
work, they will not develop high task and relationship maturity or relate
effectively with other development teams, related groups, customers, or

Software Process Modelling 155

suppliers. Unless development groups routinely plan their work and follow
their plans, they will not consistently meet their commitments. Further, when
development groups do not consistently meet their commitments,
management, other related groups, and the customers, will not rely on or
trust them. Finally, without trust, a cooperative and effective working
relationship among groups is impossible. To build such a trusting
relationship, the developers and their management must be trained, coached,
and guided in performing effective personal and team management practices.

Effective personal and team management practices include estimating
resources, developing plans, establishing commitments, monitoring projects,
controlling quality, and managing risk. These practices also involve
coordinating with other teams and groups. The critical human-resource
management practices include performance management, rewards and
recognition, and compensation. If organizations do not competently handle
this key group of practices, their development staffs are unlikely to operate
at the self-actualizing level.

The SEI has published a technical report that summarizes and analyzes
the results from multiple case studies in which organizations have adopted
TSP [Davis 2003]. Each of the individual case studies referenced in this
report describe an organization's adoption of TSP as well as the benefits it
has derived from its use. More case studies and impact studies are available
on the SEI Web site (www.sei.cmu.edu/tsp/recommended-reading.html).

6.2 A family of improvement frameworks

To help organizations identify and apply sound management and
development practices, the SEI has defined a family of complementary
process frameworks. These processes include the full range of management,
product development, people management, and support activities required to
effectively operate a high-technology business.

By cooperatively defining, standardizing, and maintaining these
processes, the various organizational units can establish shared expectations
and identify interdependencies and relationships. This cooperation will
further contribute to improving their task and relationship maturity.

The PS? and TSP cover the practices for individuals and teams, while
Capability Maturity Model® Integration (CMMI®) and the People CMM®
address the broader organizational, management, and integration practices
[Chrissis 2003, Curtis 2001].

Capability Maturity Model, CMM, and CMMI are registered in the U.S. Patent
and Trademark Office by Carnegie Mellon University.

156 Motivation and Process Improvement

In defining their processes, organizations should ensure that their
standard processes support the formation, operation, and utilization of
development teams. This requires a careful balance between little or no
process guidance and overly-prescriptive standard practices. Each group
should understand its role, have the flexibility to be creative, and feel
responsible for defining and managing its own personal and team activities.
To do this, organizations must understand precisely how the work is
currently performed and decide on the most desirable team practices and
integration structures. What decisions can be delegated? How will conflicts
be resolved? Who will specify, define, and plan the work? By answering
these questions, organizations can better manage their operations and more
effectively utilize their people.

To enable the effective performance of defined processes, organizational
management must identify, obtain, and develop critical development,
management, and support skills. This requires an inventory of current
competencies, future needs, and recruitment and development capabilities.
By establishing administrative systems for routinely obtaining and
maintaining critical skills, organizations can be assured that they will meet
their evolving development needs.

For professionals and their management to operate at the self-actualizing
level, they must achieve and maintain both task and relationship maturity.
This, in turn, requires that the organization establish a culture in which
individuals and teams participate in the decision making and share in the
responsibility for personal, team, and organizational performance.

In general, people and groups perform consistently with their individual
or group self interest. That is, they determine the actions that are most
advantageous to them personally and then they act accordingly. This means
that no organizational improvement initiative can be effective unless the
rewards for the individuals and their teams reinforce and motivate the
desired behavior. The organization must "fine tune" its performance
management, rewards, recognition, compensation, competency development,
and career policies and practices to align individuals' and teams' interests
with those of the organization.

6.3 Improving organizational performance with the
CMMI and the People CMM

CMMI and the People CMM provide a set of industry-proven practices
for the management and engineering processes organizations need to
improve their performance. These practices provide guidance to
organizations that help them to create an environment and organizational

Software Process Modelling 157

infrastructure that enables teams and related groups to work together
effectively. Such teamwork is a critical factor in achieving the organization's
business objectives. The environment and infrastructure that enables
teamwork also enables the work of TSP- and PSP-trained teams and
individuals to be successful.

CMMI is a process improvement and best practices framework from
which multiple capability maturity models can be derived. The People CMM
is a single capability maturity model. Both CMMI models and the People
CMM contain hundreds of practices. These practices are briefly described in
each model, and interpretation and implementation suggestions are provided.

The practices of CMMI models are organized into the following 25
process areas. While CMMI comprises multiple models, each model
addresses at least 22 of the following 25 process areas. This list is organized
by maturity level:

The Managed Level (Maturity Level 2)
Requirements Management
Project Planning
Project Monitoring and Control
Supplier Agreement Management
Measurement and Analysis
Process and Product Quality Assurance
Configuration Management

The Defined Level (Maturity Level 3)
Requirements Development
Technical Solution
Product Integration
Verification
Validation
Organizational Process Focus
Organizational Process Definition
Organizational Training
Integrated Project Management
Risk Management
Integrated Teaming
Integrated Supplier Management
Decision Analysis and Resolution
Organizational Environment for Integration

The Quantitatively Managed Level (Maturity Level 4)
Organizational Process Performance
Quantitative Project Management

The Optimizing Level (Maturity Level 5)
Organizational Innovation and Deployment
Causal Analysis and Resolution

15 8 Motivation and Process Improvement

The People CMM key process areas are:

The Managed Level (Maturity Level 2)
Staffing
Communication and Coordination
Work Environment
Performance Management
Training and Development
Compensation

The Defined Level (Maturity Level 3)
Competency Analysis
Workforce Planning
Competency Development
Career Development
Competency-Based Practices
Workgroup Development
Participatory Culture

The Predictable Level (Maturity Level 4)
Competency Integration
Empowered Workgroups
Competency-Based Assets
Quantitative Performance Management
Organizational Capability Management
Mentoring

The Optimizing Level (Maturity Level 5)
Continuous Capability Improvement
Organizational Performance Alignment
Continuous Workforce Innovation

Many organizations are implementing CMMI- and/or People CMM-
based process improvement programs, and the benefits these organizations
have obtained include better cost and schedule control, improved product
quality, increased customer satisfaction, improved employee morale, and
better integration with suppliers. In other words, these frameworks are
helping organizations address many of the motivational and behavior issues
described earlier.

There are several publications that summarize multiple case studies in
which organizations have adopted CMMI or the People CMM [Goldenson
2003, Curtis 2001]. Each of the individual case studies referenced in these
publications describe an organization's adoption of CMMI or the People
CMM as well as the benefits derived from its use. More case studies and
impact studies are available on the SEI Web site
(www.sei.cmu.edu/cmmi/adoption).

Software Process Modelling 159

7. CONCLUSIONS

While CMMI and the People CMM help improve the task and
relationship maturity of groups both inside and outside development
organizations, they are not entirely sufficient for three reasons. First,
developing and introducing defined and standard processes is a difficult task,
and organizations often don't know where to start or how to accomplish the
job in a reasonably short period of time. Second, these models provide high-
level management and engineering guidance, not specific operational
processes used by developers and their teams. Third, while high-maturity
organizations have benefited from CMMI- and People CMM-based process
achievements, they have not made all of the behavioral changes required to
achieve the highest-maturity operation possible, particularly at the individual
and team level.

The PSP and TSP frameworks were designed to address these
shortcomings. To address the first problem, the PSP and TSP provide
developers and their teams with explicit guidance on where to start and how
to quickly implement many of the CMMI and People CMM practices at the
individual and team level. Second, the PSP and TSP provide operational-
level processes for individuals and teams that show them what to do and how
to do it. Finally, the PSP and TSP practices were explicitly designed to guide
the behavior needed to achieve a high-level of personal and team maturity
for all aspects of the development work.

Conversely, the TSP and PSP are not entirely sufficient. They do not, for
example, address the processes used by such related groups as systems
design, configuration management, quality assurance, and the process
improvement and support groups. The CMMI framework addresses these
areas and identifies the overall process management practices required for a
high-maturity integrated product development process. The People CMM
addresses the people management practices needed to motivate and align
team behavior with the organization's overall interests. Together, they
provide the supportive environment required to most effectively use the TSP
and PSP.

Thus, the good practices instilled by both CMMI and the People CMM
are enhanced by the TSP and PSP, while the PSP and TSP benefit from the
integrated technical and people-management environment provided by
implementing CMMI and the People CMM.

The total set of high-maturity process management needs can be satisfied
by introducing the PSP at the personal level, using the TSP to guide and
manage teams, and using CMMI and the People CMM to institutionalize
mature management practices, build effective relationships with customers
and key suppliers, and establish standard processes for the development

160 Motivation and Process Improvement

teams and their related groups. When organizations are driven to achieve
real improvement and are not just obtaining a maturity level rating or an ISO
certificate, they should implement CMMI, the People CMM, the PSP, and
the TSP.

ACKNOWLEDGEMENTS

This paper is based on the work of many people and we much appreciate
all the work they have done to develop, refine, and transition these methods
into general practice. While we cannot possibly mention all of these people,
we particularly want to thank Bill Curtis, Jim Over, and Bill Peterson for
their leadership in key aspects of this work. In addition, we have been
fortunate to have a large group of expert reviewers who made many useful
suggestions on this document. These people are Mary Beth Chrissis, Noopur
Davis, Suzie Garcia, Caroline Graettinger, Jim McHale, Dave Kitson, Sally
Miller, Julia Mullaney, Jim Over, Bill Peterson, Mike Phillips, and Marsha
Pomeroy-Huff.

REFERENCES

Chrissis, Mary Beth, Konrad, Mike, and Shrum, Sandy. CMMI Guidelines for Process
Integration and Product Improvement Reading, MA: Addison Wesley, 2003.

Curtis, Bill, Hefley, William E., and Miller, Sally. The People Capability Maturity Model.
Reading, MA: Addison-Wesley, 2001.

Davis, Noopur, and Mullaney, Julia. The Team Software Process (TSP) in Practice: A
Summary of Recent Results, Technical Report CMU/SEI-2003-TR-014, September 2003.

Goldenson, Dennis R., and Gibson, Diane L. Demonstrating the Impact and Benefits of
CMMI: An Update and Preliminary Results, Special Report CMU/SEI-2003-SR-009,
October 2003.

Hersey, Paul, and Blanchard, Kenneth H. Management of Organizational Behavior.
Englewood Cliffs, NJ: Prentice Hall, 1977.

Humphrey, Watts S. A Discipline for Software Engineering. Reading, MA: Addison-Wesley,
1995.

Humphrey, Watts S. Winning with Software: An Executive Strategy. Reading, MA: Addison-
Wesley, 2002.

Software Process Modelling 161

Maslow, Abraham. Motivation and Personality. New York: Harper & Row, 1954.

Schein, Edgar H. Three Cultures of Management: The Key to Organizational Learning, Sloan
Management Re view, VdiW 1996.

Chapter 7

MANAGING ORGANIZATIONAL CHANGE FOR
SOFTWARE PROCESS IMPROVEMENT

Deependra MOITRA
Infosys Technologies Limited, Bangalore, India. E-mail: deependra@moitra.com

Abstract: Software process improvement has become a necessity for software intensive
businesses for their competitive performance. However, managing change and
revitalizing the organization for software process improvement is a
considerable challenge. This chapter presents an analysis of the factors that
enable and inhibit software process improvement, and presents a model and
recommendations for successfully bringing about organizational change for
software process improvement.

Key words: Software process improvement; change management; managing organizational
change; change agent.

1. INTRODUCTION

These days, software and information technology are an integral part of
almost every business. Increasingly, we are living in a world that is software
enabled. Proliferation of software in all walks of life has heightened the
demand on the profession and discipline of software engineering in terms of
cost, quality, security, reliability, and timeliness. This, in turn, points to the
need for addressing software and organizational processes - the underlying
infrastructure and environment for carrying out the development, delivery
and maintenance of software. Over the last decade, there has been a
phenomenal growth and maturity in the discipline of software engineering. It
is now established that provided a strong and optimal software development
process, many measurable benefits will result (Herbsleb et al. 1994, Paulish
and Carleton 1994, Pitterman 2000). This belief has gained strength as
software process improvement success stories from around the globe with

164 Managing Organizational Change for Software Process Improvement

evidence of improved cost, quality and delivery performance have been
reported.

While the rationale for software process improvement (SPI) is quite
straight forward, success is often difficult to come by owing to a lack of
shared context, clear objectives and ineffective approaches to managing
organizational change (Moitra 1998).

2. SOFTWARE PROCESS IMPROVEMENT (SPI)

Increasing competition and the resulting quest for software excellence
has brought about a dramatic focus on SPI. With a view to derive business
benefits such as improved quality, lower cost, compressed development
cycle time, and increased customer satisfaction, many software organizations
have installed an SPI initiative. A plethora of SPI models such as SW-CMM,
ISO 9000, Trillium, SPICE, Bootstrap, etc. emerged on the scene and have
been adopted by organizations (Zahran 1998). However, the instances of
software organizations truly achieving success in their SPI efforts are still
small in number. It may be noted that most organizations who fail with SPI
don't publish their experiences. Often, failure to align the SPI initiatives with
the business objectives and ineffective organizational change management
are the reasons for the paucity of success.

Software processes - broadly defined as a set of steps, methods,
procedures, techniques, and tools employed to develop, deliver and maintain
software - have a direct impact on the quality of the software and business
performance. It is therefore only natural to focus on improving and
optimizing software processes. However, unlike hardware processes, which
when fine-tuned and automated yield consistent output quality, software
processes have a strong dependency on human factors, especially
knowledge, competency, and attitude of people (Humphrey 1989).
Unfortunately, this distinction is often ignored when designing and
deploying software processes and while considering software process
improvements. Consequently, even though the human and organizational
dimensions and the associated "soft" aspects have a vital influence on SPI
(Stelzer and Mellis 1999, Moitra 1998), SPI initiatives often turn out to be
very mechanical in nature.

Software process improvement is about migration from the current state
of process maturity and capability to a desired state, entailing refinements in
the procedures, methods and tools (Humphrey 1989). It is also about
transition of individual and team behaviors and attitudes into more
supportive forms - fact often ignored while planning SPI. The transition in
behaviors and attitudes into a more supportive state characterized by

Software Process Modelling 165

enthusiasm, commitment and involvement is actually a very crucial element
for the success of an SPI program, and this requires a careful crafting and
managing of the underlying organizational change. Organizational change
for SPI is really challenging because it involves dealing with people with
different socio-cultural orientations and their myriad motivations,
backgrounds, preferences, and expectations. In section 4, I discuss the
problems, challenges and influencing factors for managing organizational
change for SPI.

3. BRIEF OVERVIEW OF THE LITERATURE

Although the software engineering literature contained treatments on
software process and its importance, I believe it was only with the
publication of Watts Humphrey's landmark book (1989) that software
process improvement attained a distinct identity and importance within the
discipline of software engineering. Humphrey's work received tremendous
reception across the globe, resulting in many companies adopting his
recommendations and achieving success (Humphrey et al. 1991, Brodman
and Johnson 1996, Diaz and Sligo 1997, Wohlwend and Rosenbaum 1994,
Pitterman 2000). As the success stories spread and software process
improvement gained momentum, several scholars and professionals reported
structured end-to-end approaches for planning and implementing SPI. Two
pieces of work that dealt with a systematic approach to SPI that I found
particularly helpful are books by Grady (1997) and Zahran (1998). Notably,
Zahran (1998) provides a useful classification of strategies for implementing
organizational changes for SPI, in addition to five different kinds of change
associated with SPI (p. 206).

However, in as much as SPI became a business necessity, successfully
managing an SPI program emerged as a significant business challenge.
Successfully managing organizational change became an important
consideration for success of SPI programs much like any other major
organizational change initiatives. While many excellent sources exist in the
literature on SPI, the literature associated with managing organizational
change for SPI appears scarce. There are very few publications exclusively
dealing with managing change for SPI. Wiegers (1996) discusses some
pragmatic perspectives on ten issues related to SPI and offers solutions to
address them. Stelzer and Mellis (1999) discuss success factors related to
organizational change in SPI based on their study of several ISO 9000 and
CMM-based software process improvement programs, whereas Moitra
(1998) provides an experiential account of the problems and challenges in
SPI and suggests a recommended approach. In his narrative and insightful

166 Managing Organizational Change for Software Process Improvement

article, Allen (1995) shares his successful efforts in change management for
SPI and distills many important lessons. Others (Humphrey 1989, Humphrey
1997, Grady 1997, Zahran 1998, Juran 1995) touch upon various aspects of
change management. Two insightful executive perspectives on the structure,
dynamics and success factors of SPI and change management are contained
in interviews with Norm Kerth (1996) and Sanjiv Ahuja (1999). Finally, in
his book. Anticipating Change, Weinberg (1997) presents the systems
thinking approach to dealing with change in organizations.

Outside the realm of software engineering and management literature,
however, there has been much work on managing organizational change that
I have found very useful. Many of these are directly relevant for managing
organizational change for SPI, although when applied with some background
in software engineering the overall approach becomes stronger. Hutton
(1995) is an excellent resource for anyone wanting to assume the challenging
role of a change agent and deals with the subject with a quality management
perspective. Kanter and Stein (1992), Katzenbach et al. (1996), and Kotter
(1996) offer end-to-end perspectives on managing organizational change,
whereas Duck (2001) discusses how human and emotional forces can be
leveraged to fuel organizational transformations. Robbins and Finley (1997)
provide a detailed, analytical account of why change does not work and offer
ways to successfully deal with change management. Building further on their
learning organization theory, Senge et al. (1999) present a comprehensive
systems thinking-based approach to effecting and sustaining change in
organizations.

In their influential publication. Beer et al. (1990) explains the fallacy of
commonly adopted programmatic change approaches and offers six steps to
effective change. In another insightful article, Schaffer and Thomson (1992)
discuss the importance of results-driven change programs and emphasize the
need for employees to experience continual success in improvement
programs. A comprehensive framework and approaches to organizational
change along with models for implementing change were presented by
Mintzberg and Westley (1992). Chatman and Cha (2003) show how
organizational culture can be effective leveraged, whereas Repenning and
Sterman (2001) offers some insightful perspectives and lessons drawn from
their research on process improvement in manufacturing. Other useful works
in the context of change management include (Branstad and Lucier 2001,
Prastacos et al. 2002, Ascari et al. 1995, Thomson 1998).

Managing change for SPI is not really different from managing other
kinds of organizational change, although familiarity with the nuances of
software business and development processes do help a great deal. As I
mentioned above, there are many excellent resources on SPI in general but
specific literature on managing organizational change for SPI is rather

Software Process Modelling \61

scarce. In this chapter, I synthesize my research findings and experiences
gained in managing SPI initiatives to provide an integrated approach to
managing organizational change for successful SPI. Specifically, I discuss
what is involved in SPI, describe the sources of resistance and inhibitors for
SPI, and present a pragmatic approach to managing organizational change
for SPI. In addition, I describe the characteristics of a successful change
agent - the person who leads the change initiative, and discuss the associated
skills and behaviors. Emphasis is placed both on the hard and soft aspects of
organizational change for SPI, including the human dimension.

4. PROBLEMS AND CHALLENGES IN
ORGANIZATIONAL CHANGE FOR SPI

Change in the organizational context refers to transition to a desired state
within a defined timeframe, and requires a managed process to bring about
the desired change (Hutton 1995, Kotter 1996). Several factors come into
play regarding the dynamics of organizational change for SPI. Resistance to
SPI stems from various sources and the problems of different nature impede
the organizational change. In what follows, I discuss the problems and the
sources of resistance to SPI efforts in organizations. It may be noted that my
primary focus is on the human side of the organizational change, a.k.a. the
"soft" factors that impact the change process. A deeper understanding of
these factors will help understand why some of the organizational change
drives for SPI don't succeed and how these factors influence the change
process.

Lack of Context and Vision. Human being relate to information and
action well when there is a clarity of context and purpose. A majority of the
SPI programs don't succeed because the context for change and the
objectives of the SPI program are not clear and shared among the
stakeholders (Beer et al. 1990). Context provides the background and
reasons for SPI, whereas the objectives define what needs to be improved,
how much and when. I have observed that a majority of the SPI initiatives
are often driven from a technical perspective without a clear vision for SPI
and well-established business case. This creates a lack of commitment and
sense of urgency at the executive level (Kotter 1996). Benefits are frequently
described in terms of cost reduction instead of showing the impact on the
business as a whole.

A clear context provides a sense of purpose and direction, and brings
about the necessary alignment among the stakeholders. For example, when
the business need is to reduce cycle time, then this objective must be clearly

168 Managing Organizational Change for Software Process Improvement

established in the light of the context, stating why cycle time reduction is
essential for the competitiveness of the organization. Oftentimes, the context
is either very generic or nonexistent, leading the stakeholders to believe that
SPI would be a nice thing to do. However, establishing a shared context
alone is not sufficient. Having established the context, it is necessary to
architect a vision for SPI - defining the desired improvement (the "to-be"
state) with the expected benefits and a timeline in which the specific process
improvements should be accomplished.

Focus on Compliance. In most organizations SPI is merely about
compliance to a process improvement model or system such as CMM or ISO
9000 with "certification" being the eventual goal (Wiegers 1996, Moitra
1998). In my interactions with many companies, I have observed that focus
on effectiveness and "improvement" measured by business results is often
missing. Most organizations embrace process improvement models because
it is fashionable to do so or because their competition is doing so.
Frequently, organizations do not understand how a specific process
improvement model fits into their business environment and whether
embracing it will yield the desired benefits. Typically, in such cases, most
organizations tend to emphasize conformance than building commitment for
continuous improvement. As a result, when people are asked to support an
SPI initiative without a shared context and well-defined objectives, their
participation becomes "mechanical" - they are not committed to the cause
and hence don't get involved in the SPI journey. Also, more often the
commitment fades over time if early results are not communicated. Once an
SPI initiative has stalled it is very difficult to restart.

Short-Term Focus. This is another cause of failure in SPI. It is first
important to understood that change is a time consuming process, and hence
is best brought about gradually and systematically. However, when
organizations take a tactical approach to SPI for quick gains, their focus
shifts to compliance with a model or a system, with the SPI initiative
becoming a marketing instrument (Moitra 1998, Wiegers 1996). In such
cases, SPI is not integrated with the business strategy of the organization and
seldom yields any real improvement in business performance.

Lack of Sense of Urgency. When SPI vision and objectives are
formulated, a sense of urgency in execution to realize the intended objectives
is very vital for success of the SPI effort. A quick succession of incremental
results reinforces belief in SPI in the minds of the people, generates a sense
of accomplishment, and catalyses involvement. However, I have found that
most SPI initiatives start with much fanfare but eventually die out without

Software Process Modelling 169

achieving results, and often the lack of sense of urgency is the cause for
failure. I have noticed that many organizations consider SPI as a nice thing
to do as opposed to treating it as a business priority. Unless SPI is a business
priority, it will not result in management involvement and attract a sense of
urgency. Moreover, only with a continued sense of urgency, the change and
the momentum can be sustained and the improved processes
institutionalized.

Political Dimension. SPI requires change in the organizational culture,
people's mindset and work practices, and while it is known that change is
necessary for progress, people resist change. Change requires people to
transition through a phase of discomfort or unfamiliarity, and individuals do
not want to move out of their comfort zones. In essence, change causes an
upheaval in the organization and demands adapting to new structures and
new order of things. In order to resist change, people play "games" and
resort to numerous political tactics. Moreover, the political dimension also
comes into force because of power struggle amongst some key people within
the organization, and due to ego and turf issues (Moitra 1998). After all,
processes demand certain way of working, acquisition of new competencies,
usage of new technology and tools and also embracing new behaviors.

Resistance to Change. "No body likes change except a baby with wet
pants," so goes a popular saying. Even though progress can happen only
through change, most people resist change, either actively or passively.
Change implies that people are forced out of their comfort zones. New
approaches threaten their familiarity with the "old ways" of doing things.
They also feel threatened in their established positions of expertise in the old
process and resist change to maintain their power base.

In the context of management of organizational change for SPI, usually
resistance comes from the line staff and middle managers but often these
people are not involved in envisioning and implementing the change. As a
result, the necessary buy-in from people from the trenches does not exist.
Unfortunately, most change agents fail to understand the anatomy of
resistance. Resistance to change stems from one or a combination of the
following: uncertainty and skepticism about the effectiveness of the new
processes; loss of control or prominence within the organization; and a
perception about increased overhead and demand on their time. Many times
the change agents are unable to establish the meaningfulness of the planned
change for the practitioners - What's in it for them? How does it help them
heighten their performance and deliver better software? (Zahran 1998,
Hutton 1995, Humphrey 1997). If an SPI program is perceived as a dictate
and desire from the management without its relevance and implications

170 Managing Organizational Change for Software Process Improvement

established for the people in the front line, resistance to change is inevitable
- either directly or passively.

Lack of Change Agent Buy-in. Interestingly, I have observed that there
are situations where the change agent himself (or herself) does not buy into
the SPI objectives and the associated organizational change agenda. Quite
often such situations arise because management entrusts the organizational
change responsibility to someone who himself does not subscribe to the
change vision but gets on to the job because of the organizational mandate.
In such cases, the change agent's heart and mind are not aligned with the SPI
and organizational change agenda, and often he does not know what he is
trying to accomplish and why (Moitra 1998). In other words, the selection of
the change agent is an important success factor many organizations tend to
overlook.

Ineffective Communication. Most SPI initiatives do not gain momentum
and eventually do not succeed because of the lack of effective
communication. Clear communication of the context and objectives of SPI,
regular communication to motivate and engage the employees, and also
periodic highlighting of success stories is vital for success of the program.
Regular communication keeps the stakeholders aligned to the agenda and
objectives of the SPI program. More importantly, structured communication
on what roles individuals can play and how they can help in the SPI journey
is a very effective way of ensuring across-the-board engagement (Beer et al.
1990). Under-communication prevents momentum building and dilution of
SPI intent.

Individuals need to get a clear articulation of why the envisioned change
is needed and what's in it for them. People identify best with their individual
needs and interests, and communication is crucial to making sure that people
align themselves with the organizational needs and interests as well. My
experience in observing and advising several software companies suggests
that communication, which is the most vital link in the entire SPI journey, is
often inadequate and neglected, affecting involvement and engagement of
the people, without which the real change cannot happen.

Lack of Project Management Approach. The very objective of managing
organizational change for SPI is to realize certain improvements and benefits
for business within a specific timeframe. Because of the complexities and
challenges involved in managing change and to deliver a sense of progress
and achievement, it is necessary to projectize a change management program
for SPI (Grady 1997). In many organizations, such a project management
approach does not exist and in those where it does, often the spirit of project

Software Process Modelling 171

management is not seen in the organizational culture, especially when it
comes to SPI, even though formal process improvement plans might exist.

Quality of the People. The people dealing with quality assurance and
process improvement are often seen as a hindrance than help. The main
reason for such a perception, I find, is that the quality and process
professionals often fail to relate to the realities and needs of software
development. Their positioning, therefore, tends to be viewed as theoretical
- away from the realities of the business (Moitra 1998). On the other hand,
since software development has strong dependency on human factors and
individual knowledge and competencies, the quality of the development staff
and managerial behavior also has bearing on the outcome of an SPI effort.
The quality of the change agent is also a critical success factors. He or she
must have recognition and esteem within the organization. Often the position
of change agent is seen as an overhead role and assigned to people who have
spare time and typically are not the opinion leaders of the organization.

Lack of an Integrated Approach. SPI is about achieving software
excellence, but SPI alone won't help achieve higher business performance.
For true software excellence, overall organizational maturity is essential.
Organizational maturity requires focus on three fundamental dimensions of
an organization: process, people and technology. Growth in the process
dimension requires simultaneous growth in the people and technology
dimension as each one of these have an impact on the growth of the other.
But most organizations tend to treat the process dimension in isolation, thus
receiving only sub-optimal benefits at best.

In addition, I have found that the belief based on the acquired
experiences from the past organizational change initiatives could also
adversely influence the SPI efforts, especially if the past initiatives did not
succeed.

5. MODEL FOR MANAGING ORGANIZATIONAL
CHANGE FOR SPI

Now that I have identified the factors that affect or influence
organizational change management for SPI, I offer a pragmatic approach to
guide the change initiative. Figure 1 presents the model for organizational
change, which involves four stages:

• Preparation/Readiness

172 Managing Organizational Change for Software Process Improvement

• Planning
• Implementing
• Institutionalizing.

It also emphasizes the role of communication as well as management
involvement throughout the change process in the SPI journey.

Preparation and

II1 Readiness
- • Planning - • Implementation -> Institutionalization 1

A

Rewards & Recognition 1

Culture • Environment • Organizational Communication • Management Involvement

Figure 1: Model for managing organizational change for SPI

Preparation. This phase is about preparing for change for SPI. First, a
vision for the desired change should be developed, which should be based on
what processes need improvement, why and in what order of priority.
Typically, a formal assessment of the "as-is" state is done to determine the
areas that need improvement. It is very critical that the envisioned change is
strongly aligned to the company's business goals. It is also essential to
establish clarity on what implications would the envisioned change have on
the company's business performance when realized (Reifer 2002). The
vision for change for SPI can come from senior management, middle
management, and quality managers or even from the development staff.
Irrespective of where it comes from, it is absolutely vital that the senior
management understands the need and implications of the envisioned change
and buys into it. In addition, in this stage sufficient due diligence is required
to figure out what will be the cost of the desired change. Also, all the key
people within the organization should be involved right from this stage and
for firming up the change vision, because the task of mobilizing commitment
and involvement should begin from the Preparation stage itself It is also the
time when the organization-wide communication about the envisioned
change and its compelling need for the business should begin and must be
done by the senior management.

Software Process Modelling 173

At this stage, the organization needs to assess as to whether it is ready for
embarking on the change initiative for SPI. The key thing is to determine if
the organizational environment is conducive for change. The senior
management of the organization needs to ensure that they will remain
committed to the change program and that SPI will remain a priority for
them for as long as it takes to achieve the results.

In addition, at this stage it is highly recommended that a senior
management member be identified as the sponsor for the SPI initiative with
accountability for the success of the program. The next step is to identify a
change agent, who will have the responsibility to plan out and implement the
change. It is very critical that the identified change agent has a good
understanding of the business and software engineering, and has a good
credibility within the organization. Change agent's credibility and
relationships with people across the organization have a strong influence on
the success of the SPI program. Elsewhere, in this chapter we discuss the
specific skills and competencies for a successful change agent.

Planning. In the Planning stage, the key activities include formulating
measurable objectives for SPI aligned with the change vision, and
projectizing the SPI effort. This involves breaking down the SPI effort into
manageable and logical milestones with timelines, and roles and
responsibilities for executing the change agenda. Besides planning for SPI,
the project plan should also cover in depth as to how the new or improved
processes will be deployed and what deployment mechanisms will be
employed. A very important step in this phase is validating the
implementability of the plan - Is it feasible? Is it possible to accomplish the
SPI goals in the timeline planned? Would the necessary resources and
attention be available throughout? Also, the project plan should account for
the organization wide training needs for SPI and correspondingly have a
training plan.

When the plan has specific actions formulated and outcome of each
action defined, the SPI Project Plan should be made visible to all in the
organization, so that people not only know how the change vision is going to
be realized but also can volunteer to help make the change happen.
Socialization of the plan and buy-in from all concerned in the organization is
absolutely crucial for success of SPI efforts. SPI communication strategies
for the senior management should be designed to show them the business
benefits of the SPI program, whereas for the development community the
communication strategy should additionally focus on what SPI means to
them. If the management buy-in of the SPI plan is strong, then they will help
create a 'market' for the plan and this will, in turn, ensure the necessary top-
down cascading of SPI vision and goals.

174 Managing Organizational Change for Software Process Improvement

Usually, most change programs fail because of lack of middle
management support and involvement in SPI, so it is a prerequisite for the
success of the program that middle level managers are engaged in the
planning process and completely buy into the SPI objectives. Middle
management involvement and contributions throughout the SPI journey
should be designed into the plan.

The SPI project plan should also answer the following: How the progress
of the SPI initiative will be reviewed, and how improvement will be
assessed? For this, at this stage it is necessary to define metrics for reviewing
the progress of the SPI program and to measure the success of the overall
SPI efforts. It must be kept in mind that data on progress and improvement
will go a long way in strengthening people's belief and involvement in the
SPI program. The SPI project plan should also have a communication plan,
including frequency and mode for the organization-wide communications.
Communication is not about top-down communication or information
dissemination; it is about two-way communication aimed at seeking across-
the-board employee involvement, collaboration and building commitment
for SPI.

The implementation approach in the plan should emphasize and ensure
line staff involvement, particularly the middle management. For working on
each major action for SPI, a cross-functional team involving the line staff
should be established. In addition, I have found it helpful if SPI actions are
included in the performance objectives of the line staff and the middle
managers.

An effective communication to all employees about the SPI objectives
and the need for change is immensely helpful. Communicate what precisely
is the need for change, why, share the SPI strategy and plan with them, and
articulate how SPI will help them in terms of efficiency, productivity and
performance. I have found a focus on individuals and those in the frontline
of development very useful, because when collectively the individual
performance improves through SPI the organizational performance
improves. Pay attention to the suggestions and concerns raised as you
communicate about SPI, and factor them appropriately as you refine and
baseline the SPI plan. It pays to work towards involving those sounding
negative, pessimistic and opposing - focus on how their negativity and
skepticism can be turned around by making them part of the solution and
challenging them to deliver on the improvement agenda. Bottoms-up
involvement and initiatives are tremendously effective in SPI, and that's the
focus and purpose of communication.

Implementation. In this stage, the focus is on operationalizing the plan
and realizing the SPI objectives. As prioritized in the SPI project plan, the

Software Process Modelling 175

objective in this phase is to accomplish each SPI milestone on time,
quantifying and communicating the benefits of improved processes, and
continuing to gain and sustain momentum.

It is usually recommended that the new or improved processes be tried in
a pilot setting before their wide scale deployment. However, my experience
suggests that whether to pilot a process or not should be carefully evaluated
based on several factors. Piloting helps in several ways: it provides an
indication of the level of support and enthusiasm for the change, allows
insights into the magnitude and complexity of change, allows to experience
early wins, helps in gaining experience in managing change, and above all,
gives an indication of the performance of the new process. Based on
experiences and learning acquired during a pilot, alternate or improved
strategies for organization-wide deployment can be crafted. On the other
hand, the pilot experience and its performance can affect the employee
motivation and the momentum of the change program, especially if the pilot
is not successful, leading to resistance and skepticism for SPI. It must be
noted that the failure of the pilot may not always be due to lacunas or
deficiencies in the new process; the failure could be due to lack of support
and cooperation as a result of ego and turf issues.

Many SPI experts assert that organizational-wide roll out of the new
processes must be preceded by a well-planned pilot. However, I have not
found this to be necessary. Whether to adopt a piloting approach to
implementation or not should be viewed in the light of the following
considerations (Kanter and Stein 1992):

• Extent to which change (SPI) and its implications are clearly
understood. If the intended process change is vital for the
organization and its implications are well understood across the
board, then it might be okay to directly go in for an organization-
wide deployment. However, before deployment, the process(es) must
be critically reviewed by all the stakeholders who will be affected by
it to rule out any adverse impact. To ensure this, many companies I
have interacted with involve a cross-section of the various
stakeholders in reviewing the process before baselining and releasing
it.

• Level of support and enthusiasm for SPI and change. This is a
function of conviction and shared belief in the organization that
improvement in processes is necessary. When process improvement
is carried out with the involvement of the line staff, who provide
inputs, expectations and directions for improvement, conviction and
belief in the new process will be naturally high. As a result, there will
be support and enthusiasm for adopting the new processes. When

176 Managing Organizational Change for Software Process Improvement

such conducive environment exists, and when the new process is
believed to be critical for the business (e.g. risk management
process), a pilot may not be always necessary.

• Magnitude and complexity of change for SPI. If the magnitude and
complexity of the changes for SPI are significant, particularly in case
of highly business critical processes (e.g. defect and change
management), or when it is not clear how the new process will
interact with the environment, or when there is a potential of
productivity dip attributable to new process introduction, a pilot is
recommended.

• Prior experience in managing SPI within the organization. If the prior
experiences with SPI suggests that a restricted roll out of the new
process to assess its impact will be necessary, or if an alternate
deployment approach would potentially maximize the chances of
adoption and success, then a piloting approach should be considered.

• Urgency for SPI as it relates to company's business. Specific
business conditions may warrant an across-the-board deployment of
some key processes (e.g. project management), not allowing the time
for a pilot, or when it is strongly felt that the new process will
invariably positively contribute to the business, planning for a pilot
will only delay the benefit from the new process to the larger
organization.

During implementation phase, management support and involvement is
very important because implementation requires transition from one practice
or process to another, introduction of new processes, etc., and this may lead
to several problems like dip in the productivity, increased resistance,
frustration, and political maneuvering. Such transitions could be very
demanding and stressful, and by being involved and supportive, management
ensures that there are no morale and motivation issues. This is also a good
way of demonstrating management commitment and interest in SPI.

It also pays to be flexible in the approach to implementing the process
changes, particularly flexibility to incorporate changes in the SPI plan based
on line staff inputs. However, it is important to make sure that the focus is on
results defined in the plan. A good approach is one that focuses on
ownership building and creates short-term wins. This increases the
confidence level of the project team members in the effectiveness of the new
processes and further secures their commitment towards the need for process
improvement (Schaffer and Thomson 1992). This, in turn, creates a
multiplier effect and gives birth to process improvement ambassadors in the
organization. Also, it is always good to have alternative approaches - they
come in handy during moments of crisis. One must simultaneously strive to

Software Process Modelling 177

develop infrastructure - both 'soft' (environment, culture, attitude, etc.) and
'hard' (tools, workflows, etc.) - in the organization that will enable people to
perform and implement the new process without 'pain.'

Establishing a reward and recognition system to recognize the individual
and team contributions is an essential ingredient of a SPI program. When
people are appreciated and recognized for their contributions, it not only
heightens their enthusiasm and commitment but also encourages others to
get involved. Rewards can be both monetary and non-monetary, and a well
thought out combination of both can be installed. To unleash creativity and
innovation, such awards as "the best process improvement suggestion" are
very effective.

Institutionalizing. In this phase, the focus is on making sure that the
change (improvement) is permanent and pervasive within the organization.
This stage, therefore, is about making sure that the improved processes go
beyond the pilot stage (if there is one) and are deployed across the
organization to derive the intended business benefits. Success of this stage
requires entire organization's involvement at a grass roots level in adopting
the new processes. Formation of focus groups to work on and propagate the
improved processes is a very helpful strategy to adopt. Essentially, the idea
is to clone the change agent and create many of them, focusing on various
aspects of SPI to institutionalize the change. Again, measurements should be
performed to establish effectiveness of the new processes and constantly
communicated to the people, which aid in conviction about the change and
invites involvement of the people. The change agent's job in this phase
becomes more demanding and involves ensuring the new processes are used
across the organization and the quest for continuous improvement is
intensified (Moitra 1998).

6. ROLE OF CULTURE IN SPI

Depending on the dominant organizational culture, a specific SPI strategy
should be chosen. Zahran (1998) provides some helpful perspectives on the
kind of SPI strategies that would be appropriate for different kinds of
organizational culture. However, whatever be the organizational culture, it
has a significant influence on change initiatives. Leaders and their behaviors
shape the organizational culture, and I have found that a participatory culture
has the most positive influence on SPI. Especially with regard to SPI, first
and foremost, leaders need to demonstrate genuine interest in SPI and
establish its criticality and relevance for business success. Second, leaders
need to understand SPI and its implications, and need to involve themselves

178 Managing Organizational Change for Software Process Improvement

in the SPI journey. Mere commitment for resources and budgets does not
establish leaders' interest and seriousness about SPI. So, the culture building
(for SPI) has to happen from the top, and without the engagement of senior
leaders SPI can never truly succeed.

As I mentioned above, a participatory culture is vital for SPI. When
people are involved in conceiving and guiding the change and in making
decisions, they get emotionally involved and assume ownership for success
(Chatman and Cha 2003). Unfortunately, most SPI programs tend to
emphasize conformance, and this is never effective. People do not like to
follow instructions and complying to things without knowing why should
they do something and what is in it for them. Focus on commitment
building, on the other hand, is very effective. To mobilize people's
commitment, establishing and communicating a context for change and SPI
is necessary. When the context is established and shared, it is equally
important to highlight that the success won't materialize without each
individual's commitment, involvement, and contributions. When people
understand why they are doing what they are doing and how does it help
them improve and perform better, they align their energies to the SPI cause.
They become emotionally involved in the process of change. Therefore,
strategically it is very important to capitalize on the emotional reservoir
existing within the organization, because an emotional engagement can truly
fuel the change program (Thomson 1998).

Another determinant of organizational culture for SPI is reaction to
failure. An organizational environment where involvement and initiatives are
rewarded and risk-taking is encouraged is an ideal environment for SPI. The
culture of the organization, which tolerates failures to a reasonable extent,
allows individuals to take initiatives and contribute without fear of failure.
Also, the ability to constructively confront and openly communicate
constitutes a positive SPI culture.

Yet another culture influencer is how the company does recruitment.
Building a culture is one thing, and sustaining it is another. The process of
sustaining company's culture is very challenging, because it requires the
leaders to make continuous investment in it. As the company grows and
acquires talent, it is essential that the new recruits be hired with value
systems and orientations that will align with company's value system and
culture. And, once onboard, it must be ensured that the new employees are
completely immersed into company's value system, culture and SPI
philosophy through a structured assimilation program. A technically well-
qualified person with no process orientation or regard for processes can have
very negative and destabilizing influence on the SPI program, and hence
company's recruitment philosophy and processes must ensure that any
candidate under consideration will culturally fit in the company. In the

Software Process Modelling 179

companies I have worked for and in my own hiring efforts, I have always
particularly assessed candidates for their "process centricity" and attitude
towards process improvement.

A simple way to assess whether your organizational culture is conducive
for change and SPI is to take an inventory of the various attributes of the
organizational environment as shown in Table 1, and see whether the overall
valuation is positive (Thomson 1998).

Table 1: Inventory of the attributes of organizational culture

Positive Attribute Negative Attribute
Enthusiasm Selfishness
Passion Hatred
Commitment Politics
Collaboration Leaders not practicing what they
Trust preach
Mutual respect Jealousy
Pride Internal competition
Joy Apathy
Motivation Command and control
Focus on excellence Focus on compliance

7. THE CHANGE AGENT

Change agent is a management representative responsible for driving the
SPI program and ensuring that the defined organizational and process
changes fall in place to realize the intended benefits (Allen 1995). A
successful change agent is someone who has a solid understanding of the
business, reasonably good understanding of software engineering, is
passionate about excellence, and possess a commitment for process
improvement. It is very important that the change agent has good credibility
and relationships across the organization (Hutton 1995). I believe that a
leader's credibility is a function of his technical and business competence
and his attitude and behavior, which means that an effective change agent
has to demonstrate leadership traits in both these dimensions.

Change agent's role is very critical in any change program, as his/her
abilities and attitudes have significant influence on the people's attitude
towards the change. Therefore, the selection of the change agent merits a
careful consideration. My research suggests that a successful change agent
ought to demonstrate the skills, attitudes and characteristics as shown in
Table 2 to be effective (Moitra 1998).

180 Managing Organizational Change for Software Process Improvement

Table 2: Competence profile of effective change agent

Deep cross functional understanding of the business
Knowledge of software development processes
Knowledge of software process improvement and total quality
management principles
Strong ability to sell and influence
Strong negotiation skills
Strong conflict management skills
Ability to manage emotions
Ability to establish credibility and gain respect
Good listening skills
Ability to deliver on objectives (project management)
Value-based leadership
Good trouble shooter
Ability to inspire, energize and motivate
Good coaching abilities
Ability to work across organizational layers
Manages diversity well

o

a
o
U

00

<

optimistic
Proactive
Strong belief in the SPI goals and their importance
Respect for others

•c

413

u

Persistence
High confidence
Perseverance
Flexibility
No fear of failure
Good relationship management
Enthusiastic, passionate, and driven
Practices what he/she preaches and walks the talk
Not driven by credit taking for success/results
High emotional quotient
Trustworthy

SUCCESS FACTORS FOR ORGANIZATIONAL
CHANGE FOR SPI

Managing organizational change for SPI is quite a challenge because it
requires aligning people from across the organization towards a common
cause. There are several success factors for SPI (Wiegers 1996), but the most

Software Process Modelling 181

fundamental is senior management's passionate belief in SPI and their
behavior and attitude towards it. Of course, a good change management
strategy crafted around a strong vision is necessary to align people to SPI
objectives and channel their energies. Before embarking on the change
program for SPI, company's management must ensure that SPI will remain
their priority irrespective of how the other business priorities evolve, and this
happens only when SPI is tightly linked to business benefits and
competitiveness. Therefore, establishing compelling reasons for SPI and
ensuring that the reality does not contradict the planned changes is very
crucial. This also gives the much-needed authenticity to the SPI program.

Bringing about the necessary change is a gigantic and daunting task,
which cannot be accomplished without involvement of all the people in the
organization. A thorough assessment of organization's capacity and
capability for change, and the urgency associated with the need for change,
is an essential ingredient for the success of the change program. The
selection of the change agent is equally important, because this individual
becomes the voice and face of the change. SPI requires a supportive and
participatory culture, which promotes collaboration and excellence. A
conducive organizational climate, therefore, is a necessary condition for
launching an SPI program. A culture founded on strong value system and
supported by leadership behavior should also be augmented with other
organizational aspects such as employee motivation and morale, job design
and compensation, etc. An unhappy and de-motivated employee will have no
energy and inclination to contribute to SPI.

Organizational structure also has an influence on SPI success. When
organizational structures give empowerment but do not emphasize
accountability and organization building, they tend to have a negative impact
as far as SPI is concerned. This is because such organizational structures
encourage people to pursue their own agendas, building resistance, affecting
teamwork, and lack of support for SPI. Hence, organizational structures that
establish clarity of roles and responsibilities and promote mutual
accountability are effective.

As I have emphasized throughout the chapter, constant, focused and
effective communication throughout the duration of the SPI program is
absolutely vital for its success. Establishing effective measures and metrics
for gauging and communicating the progress of SPI is thus very important.

Since successful change programs can be launched and sustained only
with an organization-wide involvement of people, it is essential that
individual needs and motivations are understood and then aligned to the SPI
objectives. My research suggests that one of the following four provides the
fundamental motivation for people to progress and succeed: knowledge,
power/prominence, money, and fear. I certainly do not recommended using

182 Managing Organizational Change for Software Process Improvement

fear in any form to drive people involvement in SPI programs. Also, except
seeking involvement and giving a sense of ownership perhaps not much can
be done to give 'power' or prominence to all individuals. However,
acquisition of new knowledge and its relevance for the individual career and
performance can surely be a motivation for people in SPI. Similarly,
appropriate rewards and recognitions definitely help in motivating people to
participate and contribute to SPI, and encourage them to take initiatives and
go the extra mile. Finally, I consider emotion as the fuel that can really fire
true performance and believe that change programs targeted at SPI should
focus on capitalizing on the emotional reservoir existing within the
organization (Duck 2001).

CHECKLIST FOR SUCCESSFULLY MANAGING ORGANIZATIONAL
CHANGE FOR SPI

1. Is SPI one of the top 3 priorities for the management for at least next 3 years?

2. Is there a well-understood business case with anticipated corporate benefits?

3. Is the context for change and SPI established?

4. Is a vision for change formulated?

5. Has the "as-is" state of the process effectiveness been assessed? Have the gaps and desired

improvements been identified in order of priorities?

6. Are clear and specific goals and priorities for SPI established?

7. Does a communication plan exist? Do people know why the change has been envisioned, and

what's their role in the entire SPI journey?

8. Have the people from the development community been involved in creating the change vision

and SPI plans?

9. Is there a management sponsor who has the bottom line accountability for the success of the SPI

program?

10. Is a change agent with organization-wide visibility and credibility across the organizational layers

identified?

11. Are mechanisms defined to ensure management involvement on an on-going basis?

12. Are measures to gauge progress of the SPI defined and made known to all the stakeholders?

13. Is a training plan defined for the people to acquire the new skills?

14. Are development staff and line managers involved in improving the identified processes and

executing the change?

15. Are rewards and recognition planned for those contributing to the SPI journey?

16. Are individual objectives formally linked to the SPI objectives?

17. Is there a forum for exchange of ideas and suggestions for SPI?

18. Have workshops aiming at providing guidance for SPI been planned for all levels for

organizations, including the senior management?

19. Does a fonnal project plan exist for SPI with milestones, timelines, and review mechanisms?

20. Are review mechanisms defined to assess the progress and impact of change?

21. Have all the key risk factors been identified and addressed through mitigation and conhr^Qwcy

plans?

Software Process Modelling 183

ACKNOWLEDGEMENTS

In addition to the two anonymous reviewers, I thank my professional
colleagues, Karl Wiegers and Wolfgang Strigel for their critical comments
and helpful suggestions on this chapter.

REFERENCES

Allen, CD. 1995. Succeeding as a Clandestine Change Agent. Communications of the ACM,
Vol. 38, No. 5, pp. 81-86.

Ascari, A., Rock, M. and Dutta, S. 1995. Reengineering and Organizational Change: Lessons
from a Comparative Analysis of Company Experiences. European Management Journal,
Vol. 13, No. l,pp. 1-30.

Beer, M., Eisenstat, R. and Spector, B. 1990. Why Change Does Not Work. Harvard Business
Review, November-December, pp. 158-166.

Branstad, P. and Lucier, C. 2001. Zealots Rising: The Case for Practical Visionaries.
strategy + business. Issue 22, 1st Quarter, pp. 1-12.

Brodman, J.G. and Johnson, D. 1996. Return on Investment from Software Process
Improvement as Measured by US Industry. Crosstalk, Vol. 9, No. 4, pp. 23-29.

Chatman, J.A. and Cha, S.E. 2003. Leading by Leveraging Culture. California Management
Review, Vol. 45, No. 5, pp. 22-33.

Diaz, M. and Sligo, J. 1997. How Software Process Improvement Helped Motorola. IEEE
Software, Vol. 14, No. 5, pp. 75-81.

Duck, J.D. 2001. The Change Monsters: The Human Forces That Fuel or Foil Corporate
Transformation and Change. Crown Business, New York.

Grady, R.B. 1997. Successful Software Process Improvement. Hewlett-Packard Professional
Books, Prentice Hall, New Jersey.

Herbsleb, J., Zubrow, D., Siegel, J., Rozum, J. and Carleton, A. 1994. Software Process
Improvement State of the Payoff. American Programmer, Vol. 7, No. 9, pp. 2-12.

Humphrey, W. S. 1989. Managing the Software Process. Addison-Wesley, New York.

Humphrey, W., Snyder, T. and Willis, R. 1991. Software Process Improvement at Hughes
Aircraft. IEEE Software, Vol. 8, No. 4, pp. 11-23.

184 Managing Organizational Change for Software Process Improvement

Humphrey, W.S. 1997. Managing Technical People: Innovation, Teamwork and Software
Process. Addison-Wesley Longman, Reading, Massachusetts.

Hutton, D.W. 1995. The Change Agent's Handbook: A Survival Guide for Quality
Improvement Champions. Tata McGraw-Hill, New Delhi.

Interview with Norm Kerth. 1996. Leading from a Powerless Position. IEEE Software,
September, pp. 106-108.

Interview with Sanjiv Ahuja. 1999. Laying the Groundwork for Success. IEEE Software,
November-December, pp. 72-75.

Kanter, R.M. and Stein, B.A. 1992. The Challenge of Organizational Change: How
Companies Experience It and Leaders Guide It. Free Press, New York.

Katzenbach, J., et al. 1996. Real Change Leaders: How You Can Create Growth and High
Performance at Your Company. Nicholas Brealey, London.

Kotter, J.P. 1996. Leading Change. Harvard Business School Press, Boston, MA.

Mintzberg, H. and Westley, F. 1992. Cycles of Organizational Change. Strategic Management
Journal, Wol 13, pp. 39-59.

Moitra, D. 1998. Managing Change for Software Process Improvement Initiatives: A Practical
Experience Based Approach. Software Process - Improvement and Practice, Vol. 4, No.
4, pp. 199-207.

Paulish, D.J. and Carleton, A.D. 1994. Case Studies of Software Process-Improvement
Measurement. IEEE Computer, Vol. 27, No. 9, pp. 50-57.

Pitterman, B. 2000. Telcordia Technologies: The Journey to High Maturity. IEEE Software,
July-August, pp. 89-96.

Prastacos, G., Soderquist, K., Spanes, Y. and Wasswenhove, L.V. 2002. An Integrated
Framework for Managing Change in the New Competitive Landscape. European
Management Journal, Vol. 20, No. 1, pp. 55-71.

Reifer, D.J. 2002. Making the Software Business Case: Improvement by Numbers. Addison-
Wesley, New Jersey.

Repenning, N.P. and Sterman, J.D. 2001. Nobody Ever Gets Credit for Fixing Problems that
Never Happened: Creating and Sustaining Process Improvement. California Management
Review, Vol. 43, No. 4, pp. 64-88.

Robbins, H. and Finley, M. 1997. Why Change Does Not Work. Orion Business Books,
London.

Software Process Modelling 185

Schaffer, R. and Thomson, H. 1992. Successful Change Programs Begin with Results.
Harvard Business Review, January-February, pp. 80-89.

Senge, P., et. al. 1999. The Dance of Change: The Challenges to Sustaining Momentum in
Learning Organizations. Currency Doubleday, New York.

Stelzer, D. and Mellis, W. 1999. Success Factors of Organizational Change in Software
Process Improvement. Software Process - Improvement and Practice, Vol. 4, No. 4, pp.
227-250.

Thomson, K. 1998. Emotional Capital. Capstone, Oxford.

Weinberg, G.M. 1997. Quality Software Management: Anticipating Change. Dorset House
Publishing, New York

Wiegers, K.E. 1996. Software Process Improvement: Ten Traps to Avoid. Software
Development, Vol. 4, No. 5.

Wohlwend, H. and Rosenbaum, S. 1994. Schlumberger's Software Improvement Program.
IEEE Transactions on Software Engineering, Vol. 20, No. 11, pp. 833-839.

Zahran, S. 1998. Software Process Improvement: Practical Guidelines for Business Success.
Addison-Wesley Longman, Sussex.

Chapter 8

A WORKSHOP-ORIENTED APPROACH FOR
DEFINING ELECTRONIC PROCESS GUIDES
A Case Study

Torgeir DINGS0YR^ Nils B. M 0 E \ Tore DYBA^ and Reidar CONRADÎ
^ SINTEF Information and Communication Technology, ^Norwegian University of Science
and Technology. E-mail: (Torgeir.Dingsoyr, Nils.B.Moe, Tore.DybaJ@sintef.no ;
Reidar. Conradi@idi.ntnu.no

Abstract: We introduce electronic process guides, and discuss their role in software
engineering projects. We then present existing methods for constructing
electronic process guides by defining a set of common processes for a
company. Different approaches from the software engineering and
management science are presented. We then go on to propose a new way of
dealing with process description in software engineering: using process
workshops as a tool to reach consensus on work practice. The main reason for
this is to get realistic descriptions with accurate detail as well as company
commitment in an efficient manner. We describe our workshop-oriented
method to define processes, which we have used in small software companies,
and show examples of results.

Key words: Electronic process guide; process workshop; process model; software process

improvement.

1. INTRODUCTION

The way we develop and maintain software, or the software process, has
long been regarded as crucial for software quality and productivity (Lehman
& Belady, 1985). Most quality systems and software process improvement
initiatives prescribe recommended processes for the developers and
organization to follow. We therefore need to describe the relevant processes.

188 A Workshop-Oriented Approach for Defining Electronic Process Guides. A Case Study

In the 1990s there was a lot of work on defining formal and rather
sophisticated process modeling languages, and associated tools for process
execution and evolution. However, in spite of substantial efforts by
academia and partly industry (Derniame et al., 1999) and creation of several
conference series (Oquendo, 2003), the attitude was too formal to have a
practical impact. In fact, most companies prefer rather simple process
models - such as IDEFO (National Institute of Standards and Technology,
1993), proprietary ad-hoc formalisms (e.g. the one used for Rational Unified
Process), or even quasi-formal diagrams using a document-producing tool
like Word (Becker-Kornstaedt et al., 2001).

We can draw two lessons from this: formal modeling of processes may
easily be overdone and is anyhow not enough to ensure developer motivation
and hence process conformance. Second, automated enactment should be
used with great care. To our knowledge, there are no success stories of
enactment in an industrial context, apart from stable and mature domains
like configuration management and testing. Knowledge-work, like software
development seems to be extremely difficult to support with enactment.

A more practical approach to process work for companies, is to make
such process descriptions available as electronic process guides (EPGs) on
the company Intranet. Our recommendation is that the developers should be
involved in such processes, both to work as recommended and to contribute
to the process models. Otherwise, there will easily be a too large gap
between the official process model and the actual process, leading to poor
process conformance. This has happened in many organizations with
elaborate quality systems, that are hardly respected by (or applicable for) the
rank and file (Conradi & Dyba, 2001). A balance must therefore be found
between discipline (obeying formal routines) and creativity (Glass, 1995)
(actual development with much improvisation (Dyba, 2000)).

This chapter reports on the experience with developing of an electronic
process guide in a Norwegian medium-size company with rather strict
requirements on their software processes. To increase process awareness by
the developers, process workshops were run to collect experience that could
lead to better process descriptions. This kind of participatory design has a
strong Scandinavian work and research tradition.

The issue we would like to discuss in this chapter is our suggested
method for organizing process workshops. Interesting questions are which
organizing elements make a well-working process, and how the process can
be designed to increase process guide usage in the future. We will describe
how this was done in an example company, and discuss experiences from
using this method, compare it to other possible approaches, and conclude
with advice for organizing similar workshops.

Software Process Modelling \ 89

Now, we present electronic process guides in further detail and then
describe important issues in employee participation which we build on in
designing process workshops. The rest of the chapter is organized as
follows: section 2 introduces the research method. Section 3 describes our
workshop-oriented method to define software processes, which we have
used in several small and medium-sized software companies. We present a
case study of results from conducting process workshops in a satellite
software company. Section 4 discusses findings from the case study in
relation to existing theory, and section 7 concludes the chapter.

1.1 Electronic process guides

Effectively disseminating process knowledge to process participants is
crucial in any software process improvement effort. Process participants
need effective guidance when process conformance is important, when a
process changes frequently, and when new personnel join a project.

Traditionally, this has been the realm of large organizations, and the way
of describing and communicating processes has focused on printed standards
and handbooks. However, such handbooks are more often seen as dust
collectors than software process improvement facilitators, and especially so
in small and medium-sized companies.

For process guides to be useful, increasingly more software companies
not only tailor their process guides to the specific needs of the company, but
also make them available on the company's intranet. This way the traditional
process handbook shifts from a bulky pile of paper to a flexible on-line
structure allowing easy access to all relevant information by means of an
electronic process guide (Scott et al., 2002).

A process guide can be seen as a structured, workflow-oriented, reference
document for a particular process, and exists to support participants in
carrying out the intended process (Kellner et al., 1998). Whether in the form
of a printed handbook or an electronic version, a process guide should
include the following basic elements:

• Activities: descriptions of "how things are done", including an
overview of the activities and details regarding each individual
activity.

• Artifacts: details regarding the products created or modified by an
activity, either as a final or intermediate result of the activity or as a
temporary result created by one of the steps.

• Roles: details regarding the roles and agents involved in performing
the activities.

190 A Workshop-Oriented Approach for Defining Electronic Process Guides. A Case Study

• Tools and Techniques: details regarding the tools and techniques
used to support or automate the performance of an activity.

A common way to describe processes is to describe process entry, tasks,
verification and exit, where entry and exit are criteria needed to be fulfilled
and the tasks describe activities, roles, artifacts, tools and techniques. This is
commonly referred to as the ETVX model.

Based on these elements, Kellner et al. (1998) have proposed a set of
basic requirements and design principles for EPGs. Most importantly, an
EPG should provide all the information elements and relationships contained
in a good paper-based process guide. In addition, it should capitalize on
diagrams, tables, and narrative to provide an effective user interface. Also, it
should make extensive use of hyper-links to support flexible navigation and
direct access to supporting information such as examples and templates.

However, the potential of EPG's can only be realized when key
capabilities are not only adopted, but also infused across the organization.
This is complicated by the fact that there is considerable scepticism among
software developers to learn from and adhere to prescribed process models,
which are often perceived as overly "structured" or implying too much
"control" (Conradi & Dyba, 2001). Therefore, we cannot expect such
infusion of EPGs unless they are perceived as useful and easy to use in daily
practice and consistent with the existing values, past experience, and needs
of the software developers (Davis, 1989; Venkatesh & Davis, 2000).

1.2 Employee participation

Conradi and Dyba (2001) showed the importance of employee
participation during the development and introduction of formal software
routines and that such routines must be supplemented by collaborative,
social processes to promote effective infusion and organizational learning.

This insight is not new. Employee participation and the way people are
treated, has been noted to be a crucial factor in organizational management
and development ever since the famous productivity studies at Western
Electric's Hawthorne plant in the 1920s (Mayo, 1933; Mayo, 1945). The
results of these studies started a revolution in management thinking, showing
that even routine jobs can be improved if the workers are treated with
respect.

Since then, participation and involvement has been one of the most
important foundations of organization development and change (Cummings
Sc Worley, 2001; French & Bell, 1999). Participation is also one of the
fundamental ideas of Total Quality Management (Crosby, 1979; Deming,
2000; Juran, 1992). Similarly, participation has always been a central goal

Software Process Modelling 191

and one of the pillars of organizational learning. For example, autonomous
work groups (Trist, 1981), quality circles (Ishikawa, 1990), survey feedback
(Baumgartel, 1959; Neff, 1966), quality of work life programs (Davis,
1977), search conferences {Emery & Purser, 1996), and cultural analysis
(Denison & Spreitzer, 1991; Schein, 1992) are a!! predicated on the belief
that increased participation will lead to better solutions and enhanced
organizational problem-solving capability.

What can be learned from these prior studies is that people tend to
support what they have participated in creating, or to use Berger and
Luckmann's (Berger & Luckmann, 1966) words: "it is more likely that one
will deviate from programmes set up for one by others than from
programmes that one has helped establish oneself"

An important aspect of participation is "co-determination", i.e. the direct
participation of workers in decisions about what should best be done at their
own level. Within the context of software development, no one is more
expert in the realities of a software company's business with respect to the
day-to-day details of particular technologies, products, and markets than the
software developers and their first-line managers are. Hence, it is important
to involve all those who are part of the software process, and have decisions
made regarding the development of EPGs by those who are closest to the
problem.

Consequently, and in order to get realistic descriptions with accurate
detail as well as company commitment in an efficient manner, we involve all
relevant employee groups in defining processes by using process workshops
as a tool to reach consensus on work practice.

2. METHOD

The research reported in this chapter is from a large industrial research
project. Software Process Improvement through Knowledge and Experience
(SPIKE), where many companies cooperate with research institutions and
universities in improvement activities. The collaboration is based on finding
common improvement and learning goals, and working together to obtain
the goals. The communication between contact persons in the companies and
researchers (and data collection) is through meetings (minutes, observation,
and pictures), telephone calls, and e-mail communication. The researchers
usually stay two-day visits in the participating companies in order to also get
into the informal arena in the company, and not just collaborate in official
meetings.

This research method is a form of action research (Greenwood & Levin,
1998), where the researchers and participants from the companies had

192 A Workshop-Oriented Approach for Defining Electronic Process Guides. A Case Study

common goals: to improve software development, and learn from that
experience. Together with the company, we discuss how improvement
activities can be organized, and try it out in a cogenerative learning process.
That the process is cogenerative means that both company "insiders" and
researcher "outsiders" are able to reflect on actions performed. A
communication arena is established with regular meetings between
researchers and the quality responsible in the company. In this case, the
process workshops were a solution suggested by researchers for a problem
the quality department had: to improve documentation of the core processes
of the company. We organized feedback-sessions after performing the
process workshops for cogenerative learning.

Potential problems with this type of research are that it can easily be
biased, in that everyone is interested in reaching the goals that are set up.
Thus, we do not know if the same results would be achieved with another set
of researchers, with other people from the company, or with another
company in the same situation. But action research is a way to get
interaction with companies in a way that would not be possible if it was not
so much in the company's interest.

The case company was selected because they were putting much effort in
software process improvement, and was thus a candidate for participation in
the SPIKE project.

3. DEFINING PROCESSES IN A MEDIUM-SIZE
COMPANY

We first describe the company where we carried out research, and then
present our work with process workshops in this company.

3.1 A satellite software company

Since the company was founded in 1984, they have delivered turnkey
ground station systems, consultancy, feasibility studies, system engineering,
training, and support. The company has been working with large
development projects, both as a prime contractor and as a subcontractor.

Customers range from universities to companies like Lockheed Martin
and Alcatel to governmental institutions like the European Space Agency
and the Norwegian Meteorological Institute.

Most of the software systems that are developed are running on Unix,
many on the Linux operating system.

The company possesses a stable and highly skilled staff, many with
master's degrees in computer science, mathematics or physics, and have

Software Process Modelling 193

what we can describe as an "engineering culture". Approximately 60 people
are working in the company, and the majority is working with software
development. Projects are managed in accordance with quality routines
fulfilling the European Space Agency PSS-05 standards and ISO 9001-2000.

The company had an extensive quality system, but the system was
cumbersome to use because of the size - and because it existed partly on file
and partly on paper. As a part of being certified according to ISO 9001-2000,
the company decided to document all main processes in the company. We
worked with the company in defining the processes for software
development.

3.2 Defining requirements for an EPG

We started out with an initial workshop. The goal of this workshop was
to define the different existing project types in the company, and to decide
the format and most important requirements for the process guide. The
company defined four main project types, and they chose the most common
one as a starting point for the following workshops. Product development
was the most common project type, and the size of this project type was
typically 1000-4000 work hours. Other project types was customer
controlled development projects, delivery projects (integration of existing
components, and configuration), maintenance projects, and studies. Typical
activities for product development projects were either customizing an
existing product for a customer, developing a new system for a customer, or
an internal project with a mixture of new development and integration of
existing products. After the project types were defined and product
development was chosen as a starting point, the most important requirements
were defined. The process guide should provide:

• Description of tasks for the most important roles in a project
• Checklists for each main process
• Templates for all documents produced
• Descriptions of best practice
• Access to all tools needed in the project (e.g. a requirement and a bug

track system).

In addition to these "functional" requirements a few non-functional
requirements were defined during the first workshop. The most important
such requirements were that it should be: easy accessible, as simple as
possible, and up to date.

194 A Workshop-Oriented Approach for Defining Electronic Process Guides. A Case Study

3.3 Discussing processes: The process workshop

We ran a total of six process workshops focusing on different parts of the
development process. The workshops involved people from the market and
quality department as well as the development unit.

In the first process workshop for product development, "initiation" was
the one the company wanted to start with. The initiation process was defined
to include "offer", "follow-up" and "blast off.

We followed the same pattern for each workshop, which we describe
below with examples of output from the first workshop. See (Ahonen et al.,
2002), for a discussion of a similar group process technique.

The workshops differed in length, but would usually last half a day. The
researchers acted as moderators and secretaries. In addition to a meeting
room, the workshop required a collection of yellow stickers in different
colors, and walls that were covered with paper, where we could attach
stickers and draw figures. A digital camera was useful to document the
results of the workshop. We also found it useful to bring large process
worksheets, based on the ETVX model: a sheet with boxes for input,
activities, output, roles and related documents involved in the process (see
Figure 2).

We defined process(es) in six steps and five sub-steps as shown in Figure
1.

As the initiation of projects is an interface between different parts of the
organization, it was important to bring together people from marketing,
quality assurance and the development department. We started the workshop
by giving a 15-minute presentation of what we were going to do, and put a
large sheet with a figure of the process worksheet (as in Figure 2) on the wall
- one for each process that would be discussed in the meeting.

For each sub-process we wanted to define, "offer", "follow-up" and
"blast-off, we went through the sub steps:

Software Process Modelling 195

Decide on
process(es) to

define

1 r

Invite participants

^ r

Process workshop

^ f

Delegate
responsibility for
implementation

1 f

Role-based
reading of

resulting process

1 r

Implement the
process in EPG

Identify activities

Find related
documents

Define sequence

Define roles

Define input and
output

Figure 1: Steps to define a process in a workshop

Identified activities. We brainstormed on the main activities of the
process by using the KJ process (Scupin, 1997) (after Japanese ethnologist
Jiro Kawakita) and documented the result. The KJ is a creative group
technique to organize and find relations between seemingly unrelated ideas.
We did this as follows:

We gave each participant a set of yellow stickers and a thick pen. We
asked them to write suggestions for activities on each yellow sticker
in large letters. People got time to document 5-10 ideas.
We asked each participant to present her suggestions: attach each
sticker on a wall, and describe the activity. No-one was allowed to
criticize or discuss the ideas at this point.
Grouped the suggestions: the participants came forward to the wall
and organized the yellow stickers into groups. We asked them to
state why they chose to move the stickers.

196 A Workshop-Oriented Approach for Defining Electronic Process Guides. A Case Study

• Formulated headings: we found new suitable headers that described
the stickers in each group. The headings were formulated to make
sense to people who have not participated in the workshop.

• We documented the diagram on the wall with groups and supporting
activities on stickers.

During this work, several interesting discussions came up, and several
important problems and misunderstandings were solved. Especially
marketing and project managers had different views on initiation, but were
able to agree on a common process during the workshop.

Because we wanted to get through three sub-processes in half a day, we
used time boxing which limited discussion. However, we were able to
produce an extensive material in the time slot for each sub-process.

The main activities identified in this step for the "blast-off sub-process
were:

• Appoint project manager
• Organize "Handover meeting"
• First project analysis
• Allocate resources
• Prepare for kick-off meeting
• Internal kick-off.

Defined the sequence of the activities. We took the activities from the
previous phase, made a sticker for each. Then, we placed them on the
activities-field of the process worksheet, where time goes from left to the
right. We found a suitable workflow between the activities.

Defined input and output. We found documents or artifacts that must be
available to start the sub-process, and which documents that mark the end of
the sub-process. We used stickers with other colors than for the activities to
mark input and output, and attached them on the process worksheet on the
wall together with the activities. Conditions that must be satisfied to begin or
exit the sub-process can be described in checklists.

Software Process Modelling 197

t \'
JApui'

OSi?-i::^sb^

AciW)>3

>P«

.^. •ipfc'i'

res'6. V

/Pela-kJ doa/>^iCfih

Figure 2: A process worksheet with input, activities, output, roles and
related documents defined

Defined roles. We brainstormed on which roles should contribute in each
activity and found the following roles for the "blast off phase: project
manager, quality assurance, development responsible, technical responsible,
product committee, bid manager, purchasing manager, logistics expert.

Related documents. We identified documents that either already existed
in the company, or new documents that would be helpful in carrying out the
activities. Such documents were templates, checklists and good examples of
input or output documents.

The researchers documented the process workshop by taking notes of
stickers in different categories, and by the use of pictures (as in Figure 3).

198 Workshop-Oriented Approach for Defining Electronic Process Guides. A Case Study

Figure 3: A workshop participant adds an activity to a process worksheet

We found it helpful to ask the people who participated in the process
workshop to read the result and comment on it (see (Shull et al., 2000) for an
example of such a technique in requirements inspection). We assigned the
most typical roles that were involved in the processes to people - and asked
them to find if there was information that was lacking or irrelevant for this
role in the description. This reading resulted in a number of modifications
and clarifications on the process description.

Finally, two people in the company were responsible for making a draft
process guide, based on the overall description of the processes which are
developed in the workshop. Each activity was then described in much more
detail than what appeared in the workshop minutes - the participants gave
feedback on these before the processes were implemented in the process
guide, as shown in Figure 4.

Software Process Modelling 199

File Edit View Go Bookmarks Tools Window Help

, R&D STANDARDS OVERV... [v MEOS Process Description

System Integration

In this phase the objecaveis to finalise system integration and peri onn system level venfication The output is a ready to release system System integration is typically performed through
several iterations

Roles and responsibilities

• System Architect (responsible for overall system integration)
• Software Engineer (assistant to system architect)
• System Architect (responsible for architectural design)
• Requirements Expert (review and handle new and changed requirements)
• Test Engineer (finalize ATP, test execution)
• Training Expert()

Input

• Component detailed design (Detailed Design Document sections)
• Component user documentation
• Draft customized system user documentation
• Component Code
• Component Test
• Intermediate System Release
• Acceptance Test Ran

* Architectural Design

These tasks are carried out by the project system architect

1 Fmalize system integration.
o Installation scripts.
o Finahzt system configuration

2. Perform Dry-Run Loop,
o Build, install and test installation according to ATP, tag "check points" in CVS.
o Log bugs, find source of bug and do bug conections, update design if needed.
o Raise requirement change requests
o RepeatuntJATPpassed
o Update architectural design it necessary

3 Integrate and fmalize system documentation
o User Manual, Admmistranon Hanual, Installation Manual

I CJ Q^ (ii3 Docutrietit Dore {U.Sbc sees]

Figure 4: A screenshot of a part of the resulting electronic process guide on the
company Intranet

3.4 Following work

After the first version of "initiation" was accepted and implemented in
the process guide, the company was ready for the next workshop. After
initiation it was natural to focus on product development. This process was
defined to include the sub-processes: "specification", "elaboration",
"component construction", and "system integration". Also for these
processes, input, activities, output, roles, and related documents involved in
the process were defined.

After the two main processes, product development and initiation were
defined, the company was ready to release the first version of the process
guide. The enthusiasm was high after the workshops, ft was therefore
important to give the workshop participants feedback through a running
system even if it was not complete. Waiting for the perfect and complete
process guide would take too long and could kill the enthusiasm. While
implementing and releasing the process guide, the company conducted
process workshops on project closure, product release, delivery and
competence registration.

These seven first workshops had from 4-6 participants (researchers not
included), and 20 persons (1/3 of the employees) from the company

200 A Workshop-Oriented Approach for Defining Electronic Process Guides. A Case Study

participated in one or more workshops. The workshops lasted from 2 hours
(workshop on format and requirements of the process guide) to 6.5 hours.
The participants did not need to prepare themselves before the workshops.
The company used:

• 168 work hours for seven workshops
• 40 work hours on supplementary work after workshops
• 208 work hours for implementing the process guide
• 223 work hours for implementing project tracking tools in addition to

the guide
• 38 work hours on documentation.

The total cost of developing the first version of the process guide was
1049 work hours.

The two researchers used 10 work hours each including preparation and
supplementary work for each workshop.

4. DISCUSSION

In this section, we would like to discuss our experience with conducting
process workshops, and elaborate on strengths and weaknesses of applying
such an approach.

We believe that participation and involvement is critical to achieve
improvement in any organization, and see the process workshop as an arena
which is open for many of the employees to take part in. Further, we see the
process workshops as an arena where representatives from various
departments can meet and discuss which will give participants a broader
view of how work is conducted in the organization. Finally, we see the
process workshop as an arena for collective reflection and learning, where
employees can share experience on how they usually solve tasks, and discuss
efforts to help them solve the tasks more efficiently.

It is not the intention in this paper to "prove" that process workshops are
more suitable than other techniques in eliciting process descriptions. We do
not yet have sufficient experience with the resulting process descriptions to
investigate that issue. We will rather point out some elements that we noted
when conducting the workshops which can be useful for other approaches in
the future. However, we note the findings of Ahonen et al. (2002), who
report that a similar workshop-technique for modeling software processes
both increased the knowledge of the real process and identified points of
improvement.

Software Process Modelling 201

First, we noted that the people who participated in the workshops were
contributing with many new perspectives on the processes. For example, one
of the people in the quality department in the company had already made a
draft version of a process description before organizing a workshop. He
found that the workshop produced a number of activities, roles, and also
input and output-documents that he did not think of himself

The brainstorming sessions with yellow stickers worked well to get all
participants involved in the process. We have experienced that software
developers often can be quite introvert people; and the workshops gave them
the opportunity to participate more actively in discussions. Using the stickers
gives each participant approximately the same time to present experience.

The workshop provided an arena for cross-functional discussion in the
company, and there were several discussions between for example the
market and software development departments on how issues were to be
handled. We think many clarifications were made that would not have
appeared if it had not been for these workshops.

We were satisfied with using the simplified version of the ETVX
"process worksheets" in the brainstorming sessions. Using the worksheet
gave an easily understandable visual presentation of the results and the
connection between different elements of the result. None of the participants
in the workshops we organized said they found the ETVX sheets
inappropriate.

During the sessions we used time boxing in order to generate ideas for all
sub-processes and sub-process elements. Because of limited time, we had to
stop some discussions to move to the next process element. In an
organizational learning sense, one could argue that we should have had more
space for free "dialogue", which would elicit more of the tacit knowledge
from the people involved. However, using time boxing generated a "flow" in
the workshop. We had the impression that none of the participants got bored
or stopped engaging in discussions because the topic was irrelevant, which
might have happened if we had allowed for more time.

Another aspect that gave a lot of feedback on the results was the role-
based reading of the results of the workshop. Assigning roles to people was a
good tool in discovering inconsistencies, for example that a role was missing
in one sub-process description or that a document relevant to a role appeared
in one sub-process as output and not as input in another sub-process later, ft
also gave us general feedback of the wording of the names of roles,
documents and activities.

We claim that the workshops provided an arena for participation which
was consistent with existing values, past experience and also with the needs
of the company employees.

202 A Workshop-Oriented Approach for Defining Electronic Process Guides. A Case Study

Further, the process workshops were fairly efficient in terms of resources
spent to design the process guide. We do not think using other approaches
such as process experts conducting interviews or purchasing existing
"canned" processes would have come out cheaper for the company. Other
approaches would also probably require more tailoring, and would not
involve the employees to such a large degree. It would also put less focus on
the learning aspects through reflection on own practice, which are evident in
group-work.

On the basis of the workshops conducted, we can recommend other
companies wanting to develop electronic process guides to organize a set of
workshops using the brainstorming techniques, the ETVX sheets and the
role-based review.

5. CONCLUSION AND FURTHER WORK

From the previous discussion of how process workshops worked in the
case study of the satellite software company we can conclude:

• Process workshops conducted in the way described provides an open
forum for reflection and learning about own work methods.

• Process workshops are an efficient method for discussing and
agreeing on a set of work processes.

Further work in this area will be to follow the acceptance, usage and
impact of this process guide in the satellite company. We would also like to
further develop the process workshop by introducing other group-based
techniques and methods. One possible future activity would be to focus more
on the "verification" part of ETVX, which we think would be useful when
processes are more established.

ACKNOWLEDGEMENTS

This work was conducted as a part of the SPIKE research project,
supported by the Research Council of Norway. We are very grateful to our
contact persons in the satellite company for providing a stimulating
environment in the project and to the participants in the process workshops
for a positive attitude towards new work methods.

Software Process Modelling 203

REFERENCES

Ahonen, J. J., Forsell, M., & Taskinen, S.-K. (2002). A Modest but Practical Software Process
Modeling Technique for Software Process Improvement. Software Process Improvement
and Practice, 7(1), 33-44.

Baumgartel, H. (1959). Using Employee Questionnaire Results for Improving Organizations:
The Survey 'Feedback' Experiment. Kansas Business Review, 12, 2-6.

Becker-Komstaedt, U., Neu, H., & Hirche, G. (2001). Software Process Technology Transfer:
Using a Formal Process Notation to Capture a Software Process in Industry. In V.
Ambriola (Ed.), Proceedings from the Eight European Workshop on Software Process
Technology (EWSPT2001) (pp. 63-76): Springer LNCS 2077.

Berger, P. L., & Luckmann, T. (1966). The Social Construction of Reality: A Treatise in the
Sociology of Knowledge. Harmonds worth: Penguin Books.

Conradi, R., & Dyba, T. (2001). An Empirical Study on the Utility of Formal Routines to
Transfer Knowledge and Experience. In V. Gruhn (Ed.), Proceedings of the European
Software Engineering Conference 2001 (ESEC'2001) (pp. 268-276): ACM/IEEE CS Press.

Crosby, P. B. (1979). Quality is Free: The Art of Making Quality Certain. New York:
McGraw-Hill.

Cummings, T. G., & Worley, C. G. (2001). Organization Development and Change.
Cincinnati, Ohio: South-Western College Publishing.

Davis, F. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of
Information Technology. MIS Quarterly, 13(3), 318-339.

Davis, L. (1977). Enhancing the Quality of Work Life: Developments in the United States.
International Labour Review, 116 (July-August), 53-65.

Deming, E. W. (2000). Out of the Crisis. Cambridge, Massachusetts: The MIT Press (first
published in 1982 by MIT Center for Advanced Educational Services).

Denison, D., & Spreitzer, G. (1991). Organizational Culture and Organizational
Development: A Competing Values Approach. In R. Woodman & W. Posmore (Eds.),
Research in Organizational Change and Development (Vol. 5, pp. 1-22.). Greenwich,
Connecticut: JAI Press.

Derniame, J.-C, Kaba, B. A., & Wastell, D. (1999). Software Process: Principles,
Methodology, and Technology. Springer Verlag LNCS 1500.

Dyba, T. (2000). Improvisation in Small Software Organizations. IEEE Software, 17
(September/October), 82-87.

Emery, M., & Purser, R. E. (1996). The Search Conference. San Francisco: Jossey-Bass.

204 A Workshop-Oriented Approach for Defining Electronic Process Guides. A Case Study

French, W. L., & Bell, C. H. J. (1999). Organization Development: Behavioral Science
Interventions for Organization Improvement. Upper Saddle River, New Jersey: Prentice-
Hall.

Glass, R. L. (1995). Software Creativity. Prentice Hall.

Greenwood, D. J., & Levin, M. (1998). Introduction to Action Research. Sage Publications.

Ishikawa, K. (1990). Introduction to Quality Control. London: Chapman & Hall.

Juran, J. M. (1992). Juran on Quality by Design: The New Steps for Planning Quality into
Goods and Services. New York: Free Press.

Kellner, M. I., Becker-Komstaedt, U., Riddle, W. E., Tomal, J., & Verlag, M. (1998). Process
Guides: Effective Guidance for Process Participants. Proceedings of the 5 th International
Conference on the Software Process: Computer Supported Organizational Work, Lisle,
Illinois, USA.

Lehman, M. M., & Belady, L. A. (1985). Program Evolution - Processes of Software Change.
Academic Press.

Mayo, E. (1933). The Human Problems of an Industrial Civilization. Boston: Harvard
University Press.

Mayo, E. (1945). The Social Problems of an Industrial Civilization. Boston: Harvard
University Press.

National Institute of Standards and Technology. (1993). The Standard for Integration
Definition for Function Modelling (IDEFO).

Neff, F. W. (1966). Survey Research: A Tool for Problem Diagnosis and Improvement in
Organizations. In A. W. Gouldner & S. M. Miller (Eds.), Applied Sociology (pp. 23-38).
New York: Free Press.

Oquendo, F. (2003). Software Process Technology. Proceedings of the Ninth International
Workshop, EWSPT'2003, Helsinki, Finland.

Schein, E. H. (1992). Organizational Culture and Leadership. San Francisco: Jossey-Bass.

Scott, L., Carvalho, L., Jeffery, R., D'Ambra, J., & Becker-Koemstaedt, U. (2002).
Understanding the Use of an Electronic Process Guide. Information and Software
Technology, 44, 601-616.

Scupin, R. (1997). The KJ Method: A Technique for Analyzing Data Derived from Japanese
Ethnology. Human Organization, 56(2), 233-237.

ShuU, F., Rus, I., & Basili, V. R. (2000). How Perspective-Based Reading Can Improve
Requirements Inspections. IEEE Computer, 33(7), 73-79.

Software Process Modelling 205

Trist, E. (1981). The Evolution of Socio-Technical Systems: A Conceptual Framework and an
Action Research Program. Toronto, Ontario: Ontario Quality of Working Life Center.

Venkatesh, V., & Davis, F. (2000). A Theoretical Extension of the Technology Acceptance
Model: Four Longitudinal Field Studies. Management Science, 46(2), 186-204.

Index

Action research 191,192
Activities 189, 190, 193-197, 199, 201
Alliance fomiing 4, 8, 11, 19
Allocation (of resources, effort, work) 93, 96, 100,

103, 104
Anti-regressive work 87, 92-95, 100-103
Apache 29, 30, 32, 38, 39, 44, 51-56, 58, 60
Artefacts 189, 190, 196
Attiibutes of organizational culture 179

B

F/OSS 1,4-11,15-18,19,20,21,22
F/OSSD 1, 2, 3, 4, 6, 8, 9, 11-15, 20, 21, 22
F/OSS project community
Feedback
Free software

Human behaviour
Hybrid modelling

4, 12, 19, 20
;9, 90, 91, 102, 103

1,20,21

142-143
83

Behaviour
Customer,
Developer and team,
Executive,
Human,
Management,
Related group,

148
145
147

142-143
146
145

Implementing change programmes 165, 166, 169,
172, 176

Input
Institutionalizing change

M

194, 196, 197, 199,201
172, 177

Capability Maturity Model - Integrated 66
Case study 189,202
Challenges in managing change 167, 170
Change agent 166, 167, 169, 170, 171, 173, 177,

179-182
Change management 164, 166, 170, 171, 176, 181
CMM 141, 155
CMMl 141,155,156-158,159,160
Co-evolving socio-technical systems 4, 15
Community building 8, 9, 10, 11, 19
Competency profiles, 124, 125, 132

Competency profile for change agent 180
Competency programmes 13 2
Complexity contiol 96
Continuous systems modelling 65, 72, 83
Coordinating software development 4,11
COTS selection, 117-10,131
Culture for SPl 177,178,179
Customer behaviour 148

Management behaviour
Managing change
Maturity models,

146
165, 166, 170, 175

117, 132
Capability Maturity Model - Integrated 66
CMM 141, 155
CMMl 141, 155, 156-158, 159, 160
People Capability Maturity Model (P-CMM)

117-118, 120-122, 135
Meta model 29,31,33-36
Model for managing organizational change

171, 172
Modelling

Continuous systems modelling 65, 72, 83
Discrete event modelling 65, 77
High level modelling 103
Hybrid modelling 83
Process modelling 128
Simulation modelling 90,104
Software process modelling 30, 31, 57, 65, 66,

73
Motivation 141, 142, 148

Defect prevention
Developer and team behaviour
Discrete event modelling

6 ,67 ,70 ,72 ,81
145

65,77

N

NetBeans 29, 30, 32, 44-51, 52, 54, 56, 58, 60

Electronic process guide
Employee participation
Estimation
ETVX
Executive behaviour

188, 189, 199, 202
189, 190

87
190, 194,201,202

147

Open source software (OSS) 1, 20, 29-33, 36-40,
44, 56-60

Open source software development 1, 20
Open source software development process

(OSSDP) 1, 3, 20, 21, 29-32, 36-38, 41-43, 51,
56, 58-60

Organizational change 163-167, 171-172, 180-182

208 Index

Output 194, 196, 197, 199,201

Participatoiy design
Peer reviews 7C
People Capability Maturity Model (P-CMM),

Planning for change
Process comparison
Process enactment
Process improvement,

IDEAL model
Process model
Process modelling
Process understanding
Process workshop 187,
PSP 141,

115.

191

117-118,
164,

30
, 120,

-192,
152-153,

165,

' , 31 ,

, 120-122,
172, 173,

31, 5(

188
1,77

135
174

i, 58
46, 56, 59, 60

132,157, 158,
121,
188,

31, 5(
194-199, 200,
155, 157, 159,

159
122
190
128

i, 57
202
160

Q

QUALISEM-People 124-126
Quality 148, 149, 150, 151, 153, 154, 158
Quality assurance 144, 145, 150, 157, 159

R

Socio-technical interaction networks
Socio-technical principles
Socio-technical systems,

and the software process
STS

Software
Software dependability
Software documentation
Software engineering education
Software evolution,

2
114

2, 15,112
113,115-130

12-114
141, 144, 150

65-67,71
134

112, 133, 135
87-89,91, 100, 105

Laws of, 87, 89, 104
Management 89
Theory of, 89, 105

Software maintenance 88, 90
Software process 20, 21, 88, 89, 90, 102, 104
Software Process Engineering Meta-model (SPEM)

31,33-36,44,45,56-60
Software process improvement 163, 164, 165, 180,

187, 189, 192
Software process modelling

Software process simulation
Software quality
Software reliability
Stakeholder business value
Stakeholders
STlNs
Success factors for organizational change for SPI

165, 166, 171, 180

30,31,57,
65, 66, 73

126-129, 133
80

71,81
81

67-69, 74
2,3,4, 18,20,21

Readiness for change 171,172
Refactoring 93, 103
Related documents 194,197,199
Related group behaviour 145
Roles 189, 190, 194, 197, 198, 199, 201

s
Satellite software company 189, 202

System dynamics
System dynamics approach,
System dynamics model

T

Techniques
Tools
TSP 141, 152, 154,

65

155,

, 72-74, 77, 80
128, 129
87, 104

190, 200, 202
190, 193, 200
157, 159, 160

Simulation 65,66,71-73,75,77,83
Simulation modelling 90, 104
Skill-gap analysis 124, 125
Social interaction 2

Value-based software engineering 65,67

